This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsumleOLD.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| dvfsumleOLD.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
||
| dvfsumleOLD.v | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
||
| dvfsumleOLD.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
||
| dvfsumleOLD.c | |- ( x = M -> A = C ) |
||
| dvfsumleOLD.d | |- ( x = N -> A = D ) |
||
| dvfsumleOLD.x | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) |
||
| dvfsumge.l | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> B <_ X ) |
||
| Assertion | dvfsumge | |- ( ph -> ( D - C ) <_ sum_ k e. ( M ..^ N ) X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsumleOLD.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | dvfsumleOLD.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
|
| 3 | dvfsumleOLD.v | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
|
| 4 | dvfsumleOLD.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
|
| 5 | dvfsumleOLD.c | |- ( x = M -> A = C ) |
|
| 6 | dvfsumleOLD.d | |- ( x = N -> A = D ) |
|
| 7 | dvfsumleOLD.x | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) |
|
| 8 | dvfsumge.l | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> B <_ X ) |
|
| 9 | df-neg | |- -u A = ( 0 - A ) |
|
| 10 | 9 | mpteq2i | |- ( x e. ( M [,] N ) |-> -u A ) = ( x e. ( M [,] N ) |-> ( 0 - A ) ) |
| 11 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 12 | 11 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 13 | 0red | |- ( ph -> 0 e. RR ) |
|
| 14 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 15 | 1 14 | syl | |- ( ph -> M e. ZZ ) |
| 16 | 15 | zred | |- ( ph -> M e. RR ) |
| 17 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 18 | 1 17 | syl | |- ( ph -> N e. ZZ ) |
| 19 | 18 | zred | |- ( ph -> N e. RR ) |
| 20 | iccssre | |- ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) |
|
| 21 | 16 19 20 | syl2anc | |- ( ph -> ( M [,] N ) C_ RR ) |
| 22 | ax-resscn | |- RR C_ CC |
|
| 23 | 21 22 | sstrdi | |- ( ph -> ( M [,] N ) C_ CC ) |
| 24 | 22 | a1i | |- ( ph -> RR C_ CC ) |
| 25 | cncfmptc | |- ( ( 0 e. RR /\ ( M [,] N ) C_ CC /\ RR C_ CC ) -> ( x e. ( M [,] N ) |-> 0 ) e. ( ( M [,] N ) -cn-> RR ) ) |
|
| 26 | 13 23 24 25 | syl3anc | |- ( ph -> ( x e. ( M [,] N ) |-> 0 ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 27 | resubcl | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 - A ) e. RR ) |
|
| 28 | 11 12 26 2 22 27 | cncfmpt2ss | |- ( ph -> ( x e. ( M [,] N ) |-> ( 0 - A ) ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 29 | 10 28 | eqeltrid | |- ( ph -> ( x e. ( M [,] N ) |-> -u A ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 30 | negex | |- -u B e. _V |
|
| 31 | 30 | a1i | |- ( ( ph /\ x e. ( M (,) N ) ) -> -u B e. _V ) |
| 32 | reelprrecn | |- RR e. { RR , CC } |
|
| 33 | 32 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 34 | ioossicc | |- ( M (,) N ) C_ ( M [,] N ) |
|
| 35 | 34 | sseli | |- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
| 36 | cncff | |- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
|
| 37 | 2 36 | syl | |- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 38 | 37 | fvmptelcdm | |- ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 39 | 35 38 | sylan2 | |- ( ( ph /\ x e. ( M (,) N ) ) -> A e. RR ) |
| 40 | 39 | recnd | |- ( ( ph /\ x e. ( M (,) N ) ) -> A e. CC ) |
| 41 | 33 40 3 4 | dvmptneg | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> -u A ) ) = ( x e. ( M (,) N ) |-> -u B ) ) |
| 42 | 5 | negeqd | |- ( x = M -> -u A = -u C ) |
| 43 | 6 | negeqd | |- ( x = N -> -u A = -u D ) |
| 44 | 7 | renegcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> -u X e. RR ) |
| 45 | 16 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) |
| 46 | 45 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) |
| 47 | elfzole1 | |- ( k e. ( M ..^ N ) -> M <_ k ) |
|
| 48 | 47 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) |
| 49 | iooss1 | |- ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
|
| 50 | 46 48 49 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 51 | 19 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) |
| 52 | 51 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) |
| 53 | fzofzp1 | |- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
|
| 54 | 53 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 55 | elfzle2 | |- ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) |
|
| 56 | 54 55 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) |
| 57 | iooss2 | |- ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
|
| 58 | 52 56 57 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 59 | 50 58 | sstrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 60 | 59 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> x e. ( M (,) N ) ) |
| 61 | 38 | adantlr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 62 | 35 61 | sylan2 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. RR ) |
| 63 | 62 | fmpttd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) |
| 64 | ioossre | |- ( M (,) N ) C_ RR |
|
| 65 | dvfre | |- ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
|
| 66 | 63 64 65 | sylancl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
| 67 | 4 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 68 | 67 | dmeqd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) |
| 69 | 3 | adantlr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) |
| 70 | 69 | ralrimiva | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. V ) |
| 71 | dmmptg | |- ( A. x e. ( M (,) N ) B e. V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
|
| 72 | 70 71 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
| 73 | 68 72 | eqtrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) |
| 74 | 67 73 | feq12d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) |
| 75 | 66 74 | mpbid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
| 76 | 75 | fvmptelcdm | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. RR ) |
| 77 | 60 76 | syldan | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> B e. RR ) |
| 78 | 77 | anasss | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> B e. RR ) |
| 79 | 7 | adantrr | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X e. RR ) |
| 80 | 78 79 | lenegd | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> ( B <_ X <-> -u X <_ -u B ) ) |
| 81 | 8 80 | mpbid | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> -u X <_ -u B ) |
| 82 | 1 29 31 41 42 43 44 81 | dvfsumle | |- ( ph -> sum_ k e. ( M ..^ N ) -u X <_ ( -u D - -u C ) ) |
| 83 | fzofi | |- ( M ..^ N ) e. Fin |
|
| 84 | 83 | a1i | |- ( ph -> ( M ..^ N ) e. Fin ) |
| 85 | 7 | recnd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
| 86 | 84 85 | fsumneg | |- ( ph -> sum_ k e. ( M ..^ N ) -u X = -u sum_ k e. ( M ..^ N ) X ) |
| 87 | 6 | eleq1d | |- ( x = N -> ( A e. RR <-> D e. RR ) ) |
| 88 | eqid | |- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
|
| 89 | 88 | fmpt | |- ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 90 | 37 89 | sylibr | |- ( ph -> A. x e. ( M [,] N ) A e. RR ) |
| 91 | 16 | rexrd | |- ( ph -> M e. RR* ) |
| 92 | 19 | rexrd | |- ( ph -> N e. RR* ) |
| 93 | eluzle | |- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
|
| 94 | 1 93 | syl | |- ( ph -> M <_ N ) |
| 95 | ubicc2 | |- ( ( M e. RR* /\ N e. RR* /\ M <_ N ) -> N e. ( M [,] N ) ) |
|
| 96 | 91 92 94 95 | syl3anc | |- ( ph -> N e. ( M [,] N ) ) |
| 97 | 87 90 96 | rspcdva | |- ( ph -> D e. RR ) |
| 98 | 97 | recnd | |- ( ph -> D e. CC ) |
| 99 | 5 | eleq1d | |- ( x = M -> ( A e. RR <-> C e. RR ) ) |
| 100 | lbicc2 | |- ( ( M e. RR* /\ N e. RR* /\ M <_ N ) -> M e. ( M [,] N ) ) |
|
| 101 | 91 92 94 100 | syl3anc | |- ( ph -> M e. ( M [,] N ) ) |
| 102 | 99 90 101 | rspcdva | |- ( ph -> C e. RR ) |
| 103 | 102 | recnd | |- ( ph -> C e. CC ) |
| 104 | 98 103 | neg2subd | |- ( ph -> ( -u D - -u C ) = ( C - D ) ) |
| 105 | 98 103 | negsubdi2d | |- ( ph -> -u ( D - C ) = ( C - D ) ) |
| 106 | 104 105 | eqtr4d | |- ( ph -> ( -u D - -u C ) = -u ( D - C ) ) |
| 107 | 82 86 106 | 3brtr3d | |- ( ph -> -u sum_ k e. ( M ..^ N ) X <_ -u ( D - C ) ) |
| 108 | 97 102 | resubcld | |- ( ph -> ( D - C ) e. RR ) |
| 109 | 84 7 | fsumrecl | |- ( ph -> sum_ k e. ( M ..^ N ) X e. RR ) |
| 110 | 108 109 | lenegd | |- ( ph -> ( ( D - C ) <_ sum_ k e. ( M ..^ N ) X <-> -u sum_ k e. ( M ..^ N ) X <_ -u ( D - C ) ) ) |
| 111 | 107 110 | mpbird | |- ( ph -> ( D - C ) <_ sum_ k e. ( M ..^ N ) X ) |