This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsumleOLD.m | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| dvfsumleOLD.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | ||
| dvfsumleOLD.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsumleOLD.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) | ||
| dvfsumleOLD.c | ⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) | ||
| dvfsumleOLD.d | ⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) | ||
| dvfsumleOLD.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) | ||
| dvfsumge.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝐵 ≤ 𝑋 ) | ||
| Assertion | dvfsumge | ⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsumleOLD.m | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | dvfsumleOLD.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | |
| 3 | dvfsumleOLD.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvfsumleOLD.b | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) | |
| 5 | dvfsumleOLD.c | ⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) | |
| 6 | dvfsumleOLD.d | ⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) | |
| 7 | dvfsumleOLD.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) | |
| 8 | dvfsumge.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝐵 ≤ 𝑋 ) | |
| 9 | df-neg | ⊢ - 𝐴 = ( 0 − 𝐴 ) | |
| 10 | 9 | mpteq2i | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ - 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 0 − 𝐴 ) ) |
| 11 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 12 | 11 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 13 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 14 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 15 | 1 14 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 16 | 15 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 17 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 18 | 1 17 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 19 | 18 | zred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 20 | iccssre | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) | |
| 21 | 16 19 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 22 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 23 | 21 22 | sstrdi | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℂ ) |
| 24 | 22 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 25 | cncfmptc | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑀 [,] 𝑁 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 0 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) | |
| 26 | 13 23 24 25 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 0 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 27 | resubcl | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 − 𝐴 ) ∈ ℝ ) | |
| 28 | 11 12 26 2 22 27 | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 0 − 𝐴 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 29 | 10 28 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ - 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 30 | negex | ⊢ - 𝐵 ∈ V | |
| 31 | 30 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → - 𝐵 ∈ V ) |
| 32 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 33 | 32 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 34 | ioossicc | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) | |
| 35 | 34 | sseli | ⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 36 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) | |
| 37 | 2 36 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 38 | 37 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 39 | 35 38 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 40 | 39 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 41 | 33 40 3 4 | dvmptneg | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ - 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ - 𝐵 ) ) |
| 42 | 5 | negeqd | ⊢ ( 𝑥 = 𝑀 → - 𝐴 = - 𝐶 ) |
| 43 | 6 | negeqd | ⊢ ( 𝑥 = 𝑁 → - 𝐴 = - 𝐷 ) |
| 44 | 7 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → - 𝑋 ∈ ℝ ) |
| 45 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 46 | 45 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ* ) |
| 47 | elfzole1 | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑘 ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ 𝑘 ) |
| 49 | iooss1 | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝑘 ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) | |
| 50 | 46 48 49 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
| 51 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 52 | 51 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
| 53 | fzofzp1 | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 54 | 53 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 55 | elfzle2 | ⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ≤ 𝑁 ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
| 57 | iooss2 | ⊢ ( ( 𝑁 ∈ ℝ* ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) | |
| 58 | 52 56 57 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 59 | 50 58 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 60 | 59 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) |
| 61 | 38 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 62 | 35 61 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 63 | 62 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 64 | ioossre | ⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ | |
| 65 | dvfre | ⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) | |
| 66 | 63 64 65 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
| 67 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 68 | 67 | dmeqd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 69 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
| 70 | 69 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 ) |
| 71 | dmmptg | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
| 73 | 68 72 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 74 | 67 73 | feq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
| 75 | 66 74 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 76 | 75 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ ℝ ) |
| 77 | 60 76 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝐵 ∈ ℝ ) |
| 78 | 77 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 79 | 7 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 80 | 78 79 | lenegd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → ( 𝐵 ≤ 𝑋 ↔ - 𝑋 ≤ - 𝐵 ) ) |
| 81 | 8 80 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → - 𝑋 ≤ - 𝐵 ) |
| 82 | 1 29 31 41 42 43 44 81 | dvfsumle | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) - 𝑋 ≤ ( - 𝐷 − - 𝐶 ) ) |
| 83 | fzofi | ⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin | |
| 84 | 83 | a1i | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 85 | 7 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℂ ) |
| 86 | 84 85 | fsumneg | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) - 𝑋 = - Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ) |
| 87 | 6 | eleq1d | ⊢ ( 𝑥 = 𝑁 → ( 𝐴 ∈ ℝ ↔ 𝐷 ∈ ℝ ) ) |
| 88 | eqid | ⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) | |
| 89 | 88 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 90 | 37 89 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
| 91 | 16 | rexrd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 92 | 19 | rexrd | ⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 93 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 94 | 1 93 | syl | ⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 95 | ubicc2 | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ∈ ( 𝑀 [,] 𝑁 ) ) | |
| 96 | 91 92 94 95 | syl3anc | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 97 | 87 90 96 | rspcdva | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 98 | 97 | recnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 99 | 5 | eleq1d | ⊢ ( 𝑥 = 𝑀 → ( 𝐴 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 100 | lbicc2 | ⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) | |
| 101 | 91 92 94 100 | syl3anc | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 102 | 99 90 101 | rspcdva | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 103 | 102 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 104 | 98 103 | neg2subd | ⊢ ( 𝜑 → ( - 𝐷 − - 𝐶 ) = ( 𝐶 − 𝐷 ) ) |
| 105 | 98 103 | negsubdi2d | ⊢ ( 𝜑 → - ( 𝐷 − 𝐶 ) = ( 𝐶 − 𝐷 ) ) |
| 106 | 104 105 | eqtr4d | ⊢ ( 𝜑 → ( - 𝐷 − - 𝐶 ) = - ( 𝐷 − 𝐶 ) ) |
| 107 | 82 86 106 | 3brtr3d | ⊢ ( 𝜑 → - Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ - ( 𝐷 − 𝐶 ) ) |
| 108 | 97 102 | resubcld | ⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ∈ ℝ ) |
| 109 | 84 7 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ∈ ℝ ) |
| 110 | 108 109 | lenegd | ⊢ ( 𝜑 → ( ( 𝐷 − 𝐶 ) ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ↔ - Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ - ( 𝐷 − 𝐶 ) ) ) |
| 111 | 107 110 | mpbird | ⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ) |