This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvexp3 | |- ( N e. ZZ -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 2 | cnelprrecn | |- CC e. { RR , CC } |
|
| 3 | 2 | a1i | |- ( N e. NN0 -> CC e. { RR , CC } ) |
| 4 | expcl | |- ( ( x e. CC /\ N e. NN0 ) -> ( x ^ N ) e. CC ) |
|
| 5 | 4 | ancoms | |- ( ( N e. NN0 /\ x e. CC ) -> ( x ^ N ) e. CC ) |
| 6 | c0ex | |- 0 e. _V |
|
| 7 | ovex | |- ( N x. ( x ^ ( N - 1 ) ) ) e. _V |
|
| 8 | 6 7 | ifex | |- if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) e. _V |
| 9 | 8 | a1i | |- ( ( N e. NN0 /\ x e. CC ) -> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) e. _V ) |
| 10 | dvexp2 | |- ( N e. NN0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
|
| 11 | difssd | |- ( N e. NN0 -> ( CC \ { 0 } ) C_ CC ) |
|
| 12 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 13 | 12 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 14 | 13 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 15 | cnn0opn | |- ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) |
|
| 16 | 15 | a1i | |- ( N e. NN0 -> ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) ) |
| 17 | 3 5 9 10 11 14 12 16 | dvmptres | |- ( N e. NN0 -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| 18 | ifid | |- if ( N = 0 , ( N x. ( x ^ ( N - 1 ) ) ) , ( N x. ( x ^ ( N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) |
|
| 19 | id | |- ( N = 0 -> N = 0 ) |
|
| 20 | oveq1 | |- ( N = 0 -> ( N - 1 ) = ( 0 - 1 ) ) |
|
| 21 | 20 | oveq2d | |- ( N = 0 -> ( x ^ ( N - 1 ) ) = ( x ^ ( 0 - 1 ) ) ) |
| 22 | 19 21 | oveq12d | |- ( N = 0 -> ( N x. ( x ^ ( N - 1 ) ) ) = ( 0 x. ( x ^ ( 0 - 1 ) ) ) ) |
| 23 | eldifsn | |- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
|
| 24 | 0z | |- 0 e. ZZ |
|
| 25 | peano2zm | |- ( 0 e. ZZ -> ( 0 - 1 ) e. ZZ ) |
|
| 26 | 24 25 | ax-mp | |- ( 0 - 1 ) e. ZZ |
| 27 | expclz | |- ( ( x e. CC /\ x =/= 0 /\ ( 0 - 1 ) e. ZZ ) -> ( x ^ ( 0 - 1 ) ) e. CC ) |
|
| 28 | 26 27 | mp3an3 | |- ( ( x e. CC /\ x =/= 0 ) -> ( x ^ ( 0 - 1 ) ) e. CC ) |
| 29 | 23 28 | sylbi | |- ( x e. ( CC \ { 0 } ) -> ( x ^ ( 0 - 1 ) ) e. CC ) |
| 30 | 29 | adantl | |- ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( 0 - 1 ) ) e. CC ) |
| 31 | 30 | mul02d | |- ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> ( 0 x. ( x ^ ( 0 - 1 ) ) ) = 0 ) |
| 32 | 22 31 | sylan9eqr | |- ( ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) /\ N = 0 ) -> ( N x. ( x ^ ( N - 1 ) ) ) = 0 ) |
| 33 | 32 | ifeq1da | |- ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> if ( N = 0 , ( N x. ( x ^ ( N - 1 ) ) ) , ( N x. ( x ^ ( N - 1 ) ) ) ) = if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 34 | 18 33 | eqtr3id | |- ( ( N e. NN0 /\ x e. ( CC \ { 0 } ) ) -> ( N x. ( x ^ ( N - 1 ) ) ) = if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 35 | 34 | mpteq2dva | |- ( N e. NN0 -> ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) = ( x e. ( CC \ { 0 } ) |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| 36 | 17 35 | eqtr4d | |- ( N e. NN0 -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 37 | eldifi | |- ( x e. ( CC \ { 0 } ) -> x e. CC ) |
|
| 38 | 37 | adantl | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> x e. CC ) |
| 39 | simpll | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> N e. RR ) |
|
| 40 | 39 | recnd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> N e. CC ) |
| 41 | nnnn0 | |- ( -u N e. NN -> -u N e. NN0 ) |
|
| 42 | 41 | ad2antlr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u N e. NN0 ) |
| 43 | expneg2 | |- ( ( x e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( x ^ N ) = ( 1 / ( x ^ -u N ) ) ) |
|
| 44 | 38 40 42 43 | syl3anc | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ N ) = ( 1 / ( x ^ -u N ) ) ) |
| 45 | 44 | mpteq2dva | |- ( ( N e. RR /\ -u N e. NN ) -> ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) = ( x e. ( CC \ { 0 } ) |-> ( 1 / ( x ^ -u N ) ) ) ) |
| 46 | 45 | oveq2d | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( CC _D ( x e. ( CC \ { 0 } ) |-> ( 1 / ( x ^ -u N ) ) ) ) ) |
| 47 | 2 | a1i | |- ( ( N e. RR /\ -u N e. NN ) -> CC e. { RR , CC } ) |
| 48 | eldifsni | |- ( x e. ( CC \ { 0 } ) -> x =/= 0 ) |
|
| 49 | 48 | adantl | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> x =/= 0 ) |
| 50 | nnz | |- ( -u N e. NN -> -u N e. ZZ ) |
|
| 51 | 50 | ad2antlr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u N e. ZZ ) |
| 52 | 38 49 51 | expclzd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ -u N ) e. CC ) |
| 53 | 38 49 51 | expne0d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ -u N ) =/= 0 ) |
| 54 | eldifsn | |- ( ( x ^ -u N ) e. ( CC \ { 0 } ) <-> ( ( x ^ -u N ) e. CC /\ ( x ^ -u N ) =/= 0 ) ) |
|
| 55 | 52 53 54 | sylanbrc | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ -u N ) e. ( CC \ { 0 } ) ) |
| 56 | ovex | |- ( -u N x. ( x ^ ( -u N - 1 ) ) ) e. _V |
|
| 57 | 56 | a1i | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. ( x ^ ( -u N - 1 ) ) ) e. _V ) |
| 58 | simpr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> y e. ( CC \ { 0 } ) ) |
|
| 59 | eldifsn | |- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
|
| 60 | 58 59 | sylib | |- ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> ( y e. CC /\ y =/= 0 ) ) |
| 61 | reccl | |- ( ( y e. CC /\ y =/= 0 ) -> ( 1 / y ) e. CC ) |
|
| 62 | 60 61 | syl | |- ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> ( 1 / y ) e. CC ) |
| 63 | negex | |- -u ( 1 / ( y ^ 2 ) ) e. _V |
|
| 64 | 63 | a1i | |- ( ( ( N e. RR /\ -u N e. NN ) /\ y e. ( CC \ { 0 } ) ) -> -u ( 1 / ( y ^ 2 ) ) e. _V ) |
| 65 | simpr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> x e. CC ) |
|
| 66 | 41 | ad2antlr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> -u N e. NN0 ) |
| 67 | 65 66 | expcld | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> ( x ^ -u N ) e. CC ) |
| 68 | 56 | a1i | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. CC ) -> ( -u N x. ( x ^ ( -u N - 1 ) ) ) e. _V ) |
| 69 | dvexp | |- ( -u N e. NN -> ( CC _D ( x e. CC |-> ( x ^ -u N ) ) ) = ( x e. CC |-> ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) |
|
| 70 | 69 | adantl | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. CC |-> ( x ^ -u N ) ) ) = ( x e. CC |-> ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) |
| 71 | difssd | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC \ { 0 } ) C_ CC ) |
|
| 72 | 15 | a1i | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) ) |
| 73 | 47 67 68 70 71 14 12 72 | dvmptres | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ -u N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) |
| 74 | ax-1cn | |- 1 e. CC |
|
| 75 | dvrec | |- ( 1 e. CC -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( 1 / ( y ^ 2 ) ) ) ) |
|
| 76 | 74 75 | mp1i | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( 1 / ( y ^ 2 ) ) ) ) |
| 77 | oveq2 | |- ( y = ( x ^ -u N ) -> ( 1 / y ) = ( 1 / ( x ^ -u N ) ) ) |
|
| 78 | oveq1 | |- ( y = ( x ^ -u N ) -> ( y ^ 2 ) = ( ( x ^ -u N ) ^ 2 ) ) |
|
| 79 | 78 | oveq2d | |- ( y = ( x ^ -u N ) -> ( 1 / ( y ^ 2 ) ) = ( 1 / ( ( x ^ -u N ) ^ 2 ) ) ) |
| 80 | 79 | negeqd | |- ( y = ( x ^ -u N ) -> -u ( 1 / ( y ^ 2 ) ) = -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) ) |
| 81 | 47 47 55 57 62 64 73 76 77 80 | dvmptco | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( 1 / ( x ^ -u N ) ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) ) |
| 82 | 2z | |- 2 e. ZZ |
|
| 83 | 82 | a1i | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> 2 e. ZZ ) |
| 84 | expmulz | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( -u N e. ZZ /\ 2 e. ZZ ) ) -> ( x ^ ( -u N x. 2 ) ) = ( ( x ^ -u N ) ^ 2 ) ) |
|
| 85 | 38 49 51 83 84 | syl22anc | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N x. 2 ) ) = ( ( x ^ -u N ) ^ 2 ) ) |
| 86 | 85 | eqcomd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( x ^ -u N ) ^ 2 ) = ( x ^ ( -u N x. 2 ) ) ) |
| 87 | 86 | oveq2d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( 1 / ( ( x ^ -u N ) ^ 2 ) ) = ( 1 / ( x ^ ( -u N x. 2 ) ) ) ) |
| 88 | 87 | negeqd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) = -u ( 1 / ( x ^ ( -u N x. 2 ) ) ) ) |
| 89 | peano2zm | |- ( -u N e. ZZ -> ( -u N - 1 ) e. ZZ ) |
|
| 90 | 51 89 | syl | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - 1 ) e. ZZ ) |
| 91 | 38 49 90 | expclzd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N - 1 ) ) e. CC ) |
| 92 | 40 91 | mulneg1d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. ( x ^ ( -u N - 1 ) ) ) = -u ( N x. ( x ^ ( -u N - 1 ) ) ) ) |
| 93 | 88 92 | oveq12d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) = ( -u ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. -u ( N x. ( x ^ ( -u N - 1 ) ) ) ) ) |
| 94 | zmulcl | |- ( ( -u N e. ZZ /\ 2 e. ZZ ) -> ( -u N x. 2 ) e. ZZ ) |
|
| 95 | 51 82 94 | sylancl | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) e. ZZ ) |
| 96 | 38 49 95 | expclzd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N x. 2 ) ) e. CC ) |
| 97 | 38 49 95 | expne0d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( -u N x. 2 ) ) =/= 0 ) |
| 98 | 96 97 | reccld | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( 1 / ( x ^ ( -u N x. 2 ) ) ) e. CC ) |
| 99 | 40 91 | mulcld | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( N x. ( x ^ ( -u N - 1 ) ) ) e. CC ) |
| 100 | 98 99 | mul2negd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. -u ( N x. ( x ^ ( -u N - 1 ) ) ) ) = ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( N x. ( x ^ ( -u N - 1 ) ) ) ) ) |
| 101 | 98 40 91 | mul12d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( N x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) ) ) |
| 102 | 38 49 95 90 | expsubd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( ( -u N - 1 ) - ( -u N x. 2 ) ) ) = ( ( x ^ ( -u N - 1 ) ) / ( x ^ ( -u N x. 2 ) ) ) ) |
| 103 | nncn | |- ( -u N e. NN -> -u N e. CC ) |
|
| 104 | 103 | ad2antlr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> -u N e. CC ) |
| 105 | 74 | a1i | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> 1 e. CC ) |
| 106 | 95 | zcnd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) e. CC ) |
| 107 | 104 105 106 | sub32d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( -u N - 1 ) - ( -u N x. 2 ) ) = ( ( -u N - ( -u N x. 2 ) ) - 1 ) ) |
| 108 | 104 | times2d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) = ( -u N + -u N ) ) |
| 109 | 104 40 | negsubd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N + -u N ) = ( -u N - N ) ) |
| 110 | 108 109 | eqtrd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N x. 2 ) = ( -u N - N ) ) |
| 111 | 110 | oveq2d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - ( -u N x. 2 ) ) = ( -u N - ( -u N - N ) ) ) |
| 112 | 104 40 | nncand | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - ( -u N - N ) ) = N ) |
| 113 | 111 112 | eqtrd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u N - ( -u N x. 2 ) ) = N ) |
| 114 | 113 | oveq1d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( -u N - ( -u N x. 2 ) ) - 1 ) = ( N - 1 ) ) |
| 115 | 107 114 | eqtrd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( -u N - 1 ) - ( -u N x. 2 ) ) = ( N - 1 ) ) |
| 116 | 115 | oveq2d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( x ^ ( ( -u N - 1 ) - ( -u N x. 2 ) ) ) = ( x ^ ( N - 1 ) ) ) |
| 117 | 91 96 97 | divrec2d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( x ^ ( -u N - 1 ) ) / ( x ^ ( -u N x. 2 ) ) ) = ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) ) |
| 118 | 102 116 117 | 3eqtr3rd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) = ( x ^ ( N - 1 ) ) ) |
| 119 | 118 | oveq2d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( N x. ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
| 120 | 101 119 | eqtrd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( ( 1 / ( x ^ ( -u N x. 2 ) ) ) x. ( N x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
| 121 | 93 100 120 | 3eqtrd | |- ( ( ( N e. RR /\ -u N e. NN ) /\ x e. ( CC \ { 0 } ) ) -> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
| 122 | 121 | mpteq2dva | |- ( ( N e. RR /\ -u N e. NN ) -> ( x e. ( CC \ { 0 } ) |-> ( -u ( 1 / ( ( x ^ -u N ) ^ 2 ) ) x. ( -u N x. ( x ^ ( -u N - 1 ) ) ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 123 | 46 81 122 | 3eqtrd | |- ( ( N e. RR /\ -u N e. NN ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 124 | 36 123 | jaoi | |- ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 125 | 1 124 | sylbi | |- ( N e. ZZ -> ( CC _D ( x e. ( CC \ { 0 } ) |-> ( x ^ N ) ) ) = ( x e. ( CC \ { 0 } ) |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |