This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprmpweq | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. Prime ) |
|
| 2 | simp2 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> A e. NN ) |
|
| 3 | 1 2 | pccld | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P pCnt A ) e. NN0 ) |
| 4 | 3 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( P pCnt A ) e. NN0 ) |
| 5 | oveq2 | |- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
|
| 6 | 5 | eqeq2d | |- ( n = ( P pCnt A ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 7 | 6 | adantl | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = ( P pCnt A ) ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 8 | simpl3 | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. NN0 ) |
|
| 9 | oveq2 | |- ( n = N -> ( P ^ n ) = ( P ^ N ) ) |
|
| 10 | 9 | breq2d | |- ( n = N -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) |
| 11 | 10 | adantl | |- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = N ) -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) |
| 12 | simpr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A || ( P ^ N ) ) |
|
| 13 | 8 11 12 | rspcedvd | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A || ( P ^ n ) ) |
| 14 | pcprmpw2 | |- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
|
| 15 | 14 | 3adant3 | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 16 | 15 | adantr | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 17 | 13 16 | mpbid | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
| 18 | 4 7 17 | rspcedvd | |- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
| 19 | 18 | ex | |- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |