This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expgt1 | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < ( A ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | 1 | a1i | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 e. RR ) |
| 3 | simp1 | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. RR ) |
|
| 4 | simp2 | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN ) |
|
| 5 | 4 | nnnn0d | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN0 ) |
| 6 | reexpcl | |- ( ( A e. RR /\ N e. NN0 ) -> ( A ^ N ) e. RR ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) e. RR ) |
| 8 | simp3 | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < A ) |
|
| 9 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 10 | 4 9 | syl | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( N - 1 ) e. NN0 ) |
| 11 | ltle | |- ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A -> 1 <_ A ) ) |
|
| 12 | 1 3 11 | sylancr | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 < A -> 1 <_ A ) ) |
| 13 | 8 12 | mpd | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ A ) |
| 14 | expge1 | |- ( ( A e. RR /\ ( N - 1 ) e. NN0 /\ 1 <_ A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) |
|
| 15 | 3 10 13 14 | syl3anc | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) |
| 16 | reexpcl | |- ( ( A e. RR /\ ( N - 1 ) e. NN0 ) -> ( A ^ ( N - 1 ) ) e. RR ) |
|
| 17 | 3 10 16 | syl2anc | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ ( N - 1 ) ) e. RR ) |
| 18 | 0red | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 e. RR ) |
|
| 19 | 0lt1 | |- 0 < 1 |
|
| 20 | 19 | a1i | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < 1 ) |
| 21 | 18 2 3 20 8 | lttrd | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < A ) |
| 22 | lemul1 | |- ( ( 1 e. RR /\ ( A ^ ( N - 1 ) ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) |
|
| 23 | 2 17 3 21 22 | syl112anc | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) |
| 24 | 15 23 | mpbid | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) |
| 25 | recn | |- ( A e. RR -> A e. CC ) |
|
| 26 | 25 | 3ad2ant1 | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. CC ) |
| 27 | 26 | mullidd | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) = A ) |
| 28 | 27 | eqcomd | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A = ( 1 x. A ) ) |
| 29 | expm1t | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
|
| 30 | 26 4 29 | syl2anc | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
| 31 | 24 28 30 | 3brtr4d | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A <_ ( A ^ N ) ) |
| 32 | 2 3 7 8 31 | ltletrd | |- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < ( A ^ N ) ) |