This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsqpwdvds | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) -> C || ( 2 x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | |- ( A e. NN0 -> A e. CC ) |
|
| 2 | nn0cn | |- ( B e. NN0 -> B e. CC ) |
|
| 3 | 1 2 | anim12i | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
| 4 | 3 | 3adant3 | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A e. CC /\ B e. CC ) ) |
| 5 | subsq | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
| 7 | 6 | adantr | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
| 8 | 7 | eqeq2d | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) <-> ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) ) |
| 9 | simprl | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> C e. Prime ) |
|
| 10 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 11 | nn0z | |- ( B e. NN0 -> B e. ZZ ) |
|
| 12 | 10 11 | anim12i | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 13 | zaddcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
|
| 14 | 12 13 | syl | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. ZZ ) |
| 15 | 14 | 3adant3 | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) e. ZZ ) |
| 16 | nn0re | |- ( B e. NN0 -> B e. RR ) |
|
| 17 | 16 | adantl | |- ( ( A e. NN0 /\ B e. NN0 ) -> B e. RR ) |
| 18 | 1red | |- ( ( A e. NN0 /\ B e. NN0 ) -> 1 e. RR ) |
|
| 19 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 20 | 19 | adantr | |- ( ( A e. NN0 /\ B e. NN0 ) -> A e. RR ) |
| 21 | 17 18 20 | ltaddsub2d | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B + 1 ) < A <-> 1 < ( A - B ) ) ) |
| 22 | simpr | |- ( ( A e. NN0 /\ B e. NN0 ) -> B e. NN0 ) |
|
| 23 | 20 22 18 | 3jca | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A e. RR /\ B e. NN0 /\ 1 e. RR ) ) |
| 24 | difgtsumgt | |- ( ( A e. RR /\ B e. NN0 /\ 1 e. RR ) -> ( 1 < ( A - B ) -> 1 < ( A + B ) ) ) |
|
| 25 | 23 24 | syl | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( 1 < ( A - B ) -> 1 < ( A + B ) ) ) |
| 26 | 21 25 | sylbid | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B + 1 ) < A -> 1 < ( A + B ) ) ) |
| 27 | 26 | 3impia | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> 1 < ( A + B ) ) |
| 28 | eluz2b1 | |- ( ( A + B ) e. ( ZZ>= ` 2 ) <-> ( ( A + B ) e. ZZ /\ 1 < ( A + B ) ) ) |
|
| 29 | 15 27 28 | sylanbrc | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) e. ( ZZ>= ` 2 ) ) |
| 30 | 29 | adantr | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( A + B ) e. ( ZZ>= ` 2 ) ) |
| 31 | simprr | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> D e. NN0 ) |
|
| 32 | 9 30 31 | 3jca | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
| 33 | 32 | adantr | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
| 34 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 35 | 13 34 | jca | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 36 | 12 35 | syl | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 37 | 36 | 3adant3 | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 38 | dvdsmul1 | |- ( ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) |
|
| 39 | 37 38 | syl | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) |
| 40 | 39 | ad2antrr | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) |
| 41 | breq2 | |- ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> ( ( A + B ) || ( C ^ D ) <-> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
|
| 42 | 41 | adantl | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( ( A + B ) || ( C ^ D ) <-> ( A + B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
| 43 | 40 42 | mpbird | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A + B ) || ( C ^ D ) ) |
| 44 | dvdsprmpweqnn | |- ( ( C e. Prime /\ ( A + B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) -> ( ( A + B ) || ( C ^ D ) -> E. m e. NN ( A + B ) = ( C ^ m ) ) ) |
|
| 45 | 33 43 44 | sylc | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> E. m e. NN ( A + B ) = ( C ^ m ) ) |
| 46 | prmz | |- ( C e. Prime -> C e. ZZ ) |
|
| 47 | iddvdsexp | |- ( ( C e. ZZ /\ m e. NN ) -> C || ( C ^ m ) ) |
|
| 48 | 46 47 | sylan | |- ( ( C e. Prime /\ m e. NN ) -> C || ( C ^ m ) ) |
| 49 | breq2 | |- ( ( A + B ) = ( C ^ m ) -> ( C || ( A + B ) <-> C || ( C ^ m ) ) ) |
|
| 50 | 48 49 | syl5ibrcom | |- ( ( C e. Prime /\ m e. NN ) -> ( ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
| 51 | 50 | rexlimdva | |- ( C e. Prime -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
| 52 | 51 | adantr | |- ( ( C e. Prime /\ D e. NN0 ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
| 53 | 52 | adantl | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
| 54 | 53 | adantr | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( A + B ) ) ) |
| 55 | 12 34 | syl | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A - B ) e. ZZ ) |
| 56 | 55 | 3adant3 | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) e. ZZ ) |
| 57 | 21 | biimp3a | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> 1 < ( A - B ) ) |
| 58 | eluz2b1 | |- ( ( A - B ) e. ( ZZ>= ` 2 ) <-> ( ( A - B ) e. ZZ /\ 1 < ( A - B ) ) ) |
|
| 59 | 56 57 58 | sylanbrc | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) e. ( ZZ>= ` 2 ) ) |
| 60 | 59 | adantr | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( A - B ) e. ( ZZ>= ` 2 ) ) |
| 61 | 9 60 31 | 3jca | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
| 62 | 61 | adantr | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) ) |
| 63 | dvdsmul2 | |- ( ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
|
| 64 | 37 63 | syl | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
| 65 | 64 | ad2antrr | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) |
| 66 | breq2 | |- ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> ( ( A - B ) || ( C ^ D ) <-> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
|
| 67 | 66 | adantl | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( ( A - B ) || ( C ^ D ) <-> ( A - B ) || ( ( A + B ) x. ( A - B ) ) ) ) |
| 68 | 65 67 | mpbird | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( A - B ) || ( C ^ D ) ) |
| 69 | dvdsprmpweqnn | |- ( ( C e. Prime /\ ( A - B ) e. ( ZZ>= ` 2 ) /\ D e. NN0 ) -> ( ( A - B ) || ( C ^ D ) -> E. n e. NN ( A - B ) = ( C ^ n ) ) ) |
|
| 70 | 62 68 69 | sylc | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> E. n e. NN ( A - B ) = ( C ^ n ) ) |
| 71 | iddvdsexp | |- ( ( C e. ZZ /\ n e. NN ) -> C || ( C ^ n ) ) |
|
| 72 | 46 71 | sylan | |- ( ( C e. Prime /\ n e. NN ) -> C || ( C ^ n ) ) |
| 73 | breq2 | |- ( ( A - B ) = ( C ^ n ) -> ( C || ( A - B ) <-> C || ( C ^ n ) ) ) |
|
| 74 | 72 73 | syl5ibrcom | |- ( ( C e. Prime /\ n e. NN ) -> ( ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
| 75 | 74 | rexlimdva | |- ( C e. Prime -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
| 76 | 75 | adantr | |- ( ( C e. Prime /\ D e. NN0 ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
| 77 | 76 | adantl | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
| 78 | 77 | adantr | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> C || ( A - B ) ) ) |
| 79 | 46 | adantr | |- ( ( C e. Prime /\ D e. NN0 ) -> C e. ZZ ) |
| 80 | 37 79 | anim12ci | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. ZZ /\ ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) ) |
| 81 | 3anass | |- ( ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) <-> ( C e. ZZ /\ ( ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) ) |
|
| 82 | 80 81 | sylibr | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 83 | dvds2sub | |- ( ( C e. ZZ /\ ( A + B ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( ( A + B ) - ( A - B ) ) ) ) |
|
| 84 | 82 83 | syl | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( ( A + B ) - ( A - B ) ) ) ) |
| 85 | 1 | 3ad2ant1 | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> A e. CC ) |
| 86 | 2 | 3ad2ant2 | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> B e. CC ) |
| 87 | 85 86 86 | pnncand | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) |
| 88 | 2 | 2timesd | |- ( B e. NN0 -> ( 2 x. B ) = ( B + B ) ) |
| 89 | 88 | eqcomd | |- ( B e. NN0 -> ( B + B ) = ( 2 x. B ) ) |
| 90 | 89 | 3ad2ant2 | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( B + B ) = ( 2 x. B ) ) |
| 91 | 87 90 | eqtrd | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( ( A + B ) - ( A - B ) ) = ( 2 x. B ) ) |
| 92 | 91 | breq2d | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( C || ( ( A + B ) - ( A - B ) ) <-> C || ( 2 x. B ) ) ) |
| 93 | 92 | biimpd | |- ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) -> ( C || ( ( A + B ) - ( A - B ) ) -> C || ( 2 x. B ) ) ) |
| 94 | 93 | adantr | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C || ( ( A + B ) - ( A - B ) ) -> C || ( 2 x. B ) ) ) |
| 95 | 84 94 | syld | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C || ( A + B ) /\ C || ( A - B ) ) -> C || ( 2 x. B ) ) ) |
| 96 | 95 | expcomd | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( C || ( A - B ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) |
| 97 | 96 | adantr | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C || ( A - B ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) |
| 98 | 78 97 | syld | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. n e. NN ( A - B ) = ( C ^ n ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) ) |
| 99 | 70 98 | mpd | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( C || ( A + B ) -> C || ( 2 x. B ) ) ) |
| 100 | 54 99 | syld | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> ( E. m e. NN ( A + B ) = ( C ^ m ) -> C || ( 2 x. B ) ) ) |
| 101 | 45 100 | mpd | |- ( ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) /\ ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) ) -> C || ( 2 x. B ) ) |
| 102 | 101 | ex | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A + B ) x. ( A - B ) ) -> C || ( 2 x. B ) ) ) |
| 103 | 8 102 | sylbid | |- ( ( ( A e. NN0 /\ B e. NN0 /\ ( B + 1 ) < A ) /\ ( C e. Prime /\ D e. NN0 ) ) -> ( ( C ^ D ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) -> C || ( 2 x. B ) ) ) |