This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recnz | |- ( ( A e. RR /\ 1 < A ) -> -. ( 1 / A ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recgt1i | |- ( ( A e. RR /\ 1 < A ) -> ( 0 < ( 1 / A ) /\ ( 1 / A ) < 1 ) ) |
|
| 2 | 1 | simprd | |- ( ( A e. RR /\ 1 < A ) -> ( 1 / A ) < 1 ) |
| 3 | 1 | simpld | |- ( ( A e. RR /\ 1 < A ) -> 0 < ( 1 / A ) ) |
| 4 | zgt0ge1 | |- ( ( 1 / A ) e. ZZ -> ( 0 < ( 1 / A ) <-> 1 <_ ( 1 / A ) ) ) |
|
| 5 | 3 4 | syl5ibcom | |- ( ( A e. RR /\ 1 < A ) -> ( ( 1 / A ) e. ZZ -> 1 <_ ( 1 / A ) ) ) |
| 6 | 1re | |- 1 e. RR |
|
| 7 | 0lt1 | |- 0 < 1 |
|
| 8 | 0re | |- 0 e. RR |
|
| 9 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
|
| 10 | 8 6 9 | mp3an12 | |- ( A e. RR -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
| 11 | 7 10 | mpani | |- ( A e. RR -> ( 1 < A -> 0 < A ) ) |
| 12 | 11 | imdistani | |- ( ( A e. RR /\ 1 < A ) -> ( A e. RR /\ 0 < A ) ) |
| 13 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 14 | 12 13 | syl | |- ( ( A e. RR /\ 1 < A ) -> A =/= 0 ) |
| 15 | rereccl | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
|
| 16 | 14 15 | syldan | |- ( ( A e. RR /\ 1 < A ) -> ( 1 / A ) e. RR ) |
| 17 | lenlt | |- ( ( 1 e. RR /\ ( 1 / A ) e. RR ) -> ( 1 <_ ( 1 / A ) <-> -. ( 1 / A ) < 1 ) ) |
|
| 18 | 6 16 17 | sylancr | |- ( ( A e. RR /\ 1 < A ) -> ( 1 <_ ( 1 / A ) <-> -. ( 1 / A ) < 1 ) ) |
| 19 | 5 18 | sylibd | |- ( ( A e. RR /\ 1 < A ) -> ( ( 1 / A ) e. ZZ -> -. ( 1 / A ) < 1 ) ) |
| 20 | 2 19 | mt2d | |- ( ( A e. RR /\ 1 < A ) -> -. ( 1 / A ) e. ZZ ) |