This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvbdfbdioolem2.a | |- ( ph -> A e. RR ) |
|
| dvbdfbdioolem2.b | |- ( ph -> B e. RR ) |
||
| dvbdfbdioolem2.altb | |- ( ph -> A < B ) |
||
| dvbdfbdioolem2.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
||
| dvbdfbdioolem2.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| dvbdfbdioolem2.k | |- ( ph -> K e. RR ) |
||
| dvbdfbdioolem2.dvbd | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
||
| dvbdfbdioolem2.m | |- M = ( ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) + ( K x. ( B - A ) ) ) |
||
| Assertion | dvbdfbdioolem2 | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvbdfbdioolem2.a | |- ( ph -> A e. RR ) |
|
| 2 | dvbdfbdioolem2.b | |- ( ph -> B e. RR ) |
|
| 3 | dvbdfbdioolem2.altb | |- ( ph -> A < B ) |
|
| 4 | dvbdfbdioolem2.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
|
| 5 | dvbdfbdioolem2.dmdv | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 6 | dvbdfbdioolem2.k | |- ( ph -> K e. RR ) |
|
| 7 | dvbdfbdioolem2.dvbd | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K ) |
|
| 8 | dvbdfbdioolem2.m | |- M = ( ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) + ( K x. ( B - A ) ) ) |
|
| 9 | 4 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. RR ) |
| 10 | 9 | recnd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
| 11 | 10 | abscld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( F ` x ) ) e. RR ) |
| 12 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 13 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 14 | 1 2 | readdcld | |- ( ph -> ( A + B ) e. RR ) |
| 15 | 14 | rehalfcld | |- ( ph -> ( ( A + B ) / 2 ) e. RR ) |
| 16 | avglt1 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A < ( ( A + B ) / 2 ) ) ) |
|
| 17 | 1 2 16 | syl2anc | |- ( ph -> ( A < B <-> A < ( ( A + B ) / 2 ) ) ) |
| 18 | 3 17 | mpbid | |- ( ph -> A < ( ( A + B ) / 2 ) ) |
| 19 | avglt2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
|
| 20 | 1 2 19 | syl2anc | |- ( ph -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
| 21 | 3 20 | mpbid | |- ( ph -> ( ( A + B ) / 2 ) < B ) |
| 22 | 12 13 15 18 21 | eliood | |- ( ph -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 23 | 4 22 | ffvelcdmd | |- ( ph -> ( F ` ( ( A + B ) / 2 ) ) e. RR ) |
| 24 | 23 | recnd | |- ( ph -> ( F ` ( ( A + B ) / 2 ) ) e. CC ) |
| 25 | 24 | abscld | |- ( ph -> ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) e. RR ) |
| 26 | 25 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) e. RR ) |
| 27 | 11 26 | resubcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( abs ` ( F ` x ) ) - ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) e. RR ) |
| 28 | 6 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> K e. RR ) |
| 29 | 2 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR ) |
| 30 | 1 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 31 | 29 30 | resubcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( B - A ) e. RR ) |
| 32 | 28 31 | remulcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( K x. ( B - A ) ) e. RR ) |
| 33 | 24 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` ( ( A + B ) / 2 ) ) e. CC ) |
| 34 | 10 33 | subcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) e. CC ) |
| 35 | 34 | abscld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) e. RR ) |
| 36 | 10 33 | abs2difd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( abs ` ( F ` x ) ) - ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) ) |
| 37 | simpll | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> ph ) |
|
| 38 | 15 | rexrd | |- ( ph -> ( ( A + B ) / 2 ) e. RR* ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> ( ( A + B ) / 2 ) e. RR* ) |
| 40 | 13 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> B e. RR* ) |
| 41 | elioore | |- ( x e. ( A (,) B ) -> x e. RR ) |
|
| 42 | 41 | adantl | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 43 | 42 | adantr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> x e. RR ) |
| 44 | simpr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> ( ( A + B ) / 2 ) < x ) |
|
| 45 | 12 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR* ) |
| 46 | 13 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR* ) |
| 47 | simpr | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
|
| 48 | iooltub | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A (,) B ) ) -> x < B ) |
|
| 49 | 45 46 47 48 | syl3anc | |- ( ( ph /\ x e. ( A (,) B ) ) -> x < B ) |
| 50 | 49 | adantr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> x < B ) |
| 51 | 39 40 43 44 50 | eliood | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> x e. ( ( ( A + B ) / 2 ) (,) B ) ) |
| 52 | 1 | adantr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> A e. RR ) |
| 53 | 2 | adantr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> B e. RR ) |
| 54 | 4 | adantr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> F : ( A (,) B ) --> RR ) |
| 55 | 5 | adantr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 56 | 6 | adantr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> K e. RR ) |
| 57 | 2fveq3 | |- ( x = y -> ( abs ` ( ( RR _D F ) ` x ) ) = ( abs ` ( ( RR _D F ) ` y ) ) ) |
|
| 58 | 57 | breq1d | |- ( x = y -> ( ( abs ` ( ( RR _D F ) ` x ) ) <_ K <-> ( abs ` ( ( RR _D F ) ` y ) ) <_ K ) ) |
| 59 | 58 | cbvralvw | |- ( A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K <-> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ K ) |
| 60 | 7 59 | sylib | |- ( ph -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ K ) |
| 61 | 60 | adantr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ K ) |
| 62 | 22 | adantr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 63 | simpr | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> x e. ( ( ( A + B ) / 2 ) (,) B ) ) |
|
| 64 | 52 53 54 55 56 61 62 63 | dvbdfbdioolem1 | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> ( ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( x - ( ( A + B ) / 2 ) ) ) /\ ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) ) |
| 65 | 64 | simprd | |- ( ( ph /\ x e. ( ( ( A + B ) / 2 ) (,) B ) ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 66 | 37 51 65 | syl2anc | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ ( ( A + B ) / 2 ) < x ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 67 | fveq2 | |- ( ( ( A + B ) / 2 ) = x -> ( F ` ( ( A + B ) / 2 ) ) = ( F ` x ) ) |
|
| 68 | 67 | eqcomd | |- ( ( ( A + B ) / 2 ) = x -> ( F ` x ) = ( F ` ( ( A + B ) / 2 ) ) ) |
| 69 | 68 | adantl | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> ( F ` x ) = ( F ` ( ( A + B ) / 2 ) ) ) |
| 70 | 24 | adantr | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> ( F ` ( ( A + B ) / 2 ) ) e. CC ) |
| 71 | 69 70 | eqeltrd | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> ( F ` x ) e. CC ) |
| 72 | 71 69 | subeq0bd | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) = 0 ) |
| 73 | 72 | abs00bd | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) = 0 ) |
| 74 | 6 | adantr | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> K e. RR ) |
| 75 | 2 | adantr | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> B e. RR ) |
| 76 | 1 | adantr | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> A e. RR ) |
| 77 | 75 76 | resubcld | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> ( B - A ) e. RR ) |
| 78 | 0red | |- ( ph -> 0 e. RR ) |
|
| 79 | ioossre | |- ( A (,) B ) C_ RR |
|
| 80 | dvfre | |- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 81 | 4 79 80 | sylancl | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 82 | 22 5 | eleqtrrd | |- ( ph -> ( ( A + B ) / 2 ) e. dom ( RR _D F ) ) |
| 83 | 81 82 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. RR ) |
| 84 | 83 | recnd | |- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. CC ) |
| 85 | 84 | abscld | |- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) e. RR ) |
| 86 | 84 | absge0d | |- ( ph -> 0 <_ ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
| 87 | 2fveq3 | |- ( x = ( ( A + B ) / 2 ) -> ( abs ` ( ( RR _D F ) ` x ) ) = ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
|
| 88 | 87 | breq1d | |- ( x = ( ( A + B ) / 2 ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) <_ K <-> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ K ) ) |
| 89 | 88 | rspccva | |- ( ( A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ K /\ ( ( A + B ) / 2 ) e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ K ) |
| 90 | 7 22 89 | syl2anc | |- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ K ) |
| 91 | 78 85 6 86 90 | letrd | |- ( ph -> 0 <_ K ) |
| 92 | 91 | adantr | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> 0 <_ K ) |
| 93 | 2 1 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 94 | 1 2 | posdifd | |- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 95 | 3 94 | mpbid | |- ( ph -> 0 < ( B - A ) ) |
| 96 | 78 93 95 | ltled | |- ( ph -> 0 <_ ( B - A ) ) |
| 97 | 96 | adantr | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> 0 <_ ( B - A ) ) |
| 98 | 74 77 92 97 | mulge0d | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> 0 <_ ( K x. ( B - A ) ) ) |
| 99 | 73 98 | eqbrtrd | |- ( ( ph /\ ( ( A + B ) / 2 ) = x ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 100 | 99 | ad4ant14 | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ ( ( A + B ) / 2 ) = x ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 101 | simpll | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ -. ( ( A + B ) / 2 ) = x ) -> ( ph /\ x e. ( A (,) B ) ) ) |
|
| 102 | 42 | ad2antrr | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ -. ( ( A + B ) / 2 ) = x ) -> x e. RR ) |
| 103 | 15 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ -. ( ( A + B ) / 2 ) = x ) -> ( ( A + B ) / 2 ) e. RR ) |
| 104 | 42 | adantr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) -> x e. RR ) |
| 105 | 15 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) -> ( ( A + B ) / 2 ) e. RR ) |
| 106 | simpr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) -> -. ( ( A + B ) / 2 ) < x ) |
|
| 107 | 104 105 106 | nltled | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) -> x <_ ( ( A + B ) / 2 ) ) |
| 108 | 107 | adantr | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ -. ( ( A + B ) / 2 ) = x ) -> x <_ ( ( A + B ) / 2 ) ) |
| 109 | neqne | |- ( -. ( ( A + B ) / 2 ) = x -> ( ( A + B ) / 2 ) =/= x ) |
|
| 110 | 109 | adantl | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ -. ( ( A + B ) / 2 ) = x ) -> ( ( A + B ) / 2 ) =/= x ) |
| 111 | 102 103 108 110 | leneltd | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ -. ( ( A + B ) / 2 ) = x ) -> x < ( ( A + B ) / 2 ) ) |
| 112 | 10 33 | abssubd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) = ( abs ` ( ( F ` ( ( A + B ) / 2 ) ) - ( F ` x ) ) ) ) |
| 113 | 112 | adantr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) = ( abs ` ( ( F ` ( ( A + B ) / 2 ) ) - ( F ` x ) ) ) ) |
| 114 | 1 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> A e. RR ) |
| 115 | 2 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> B e. RR ) |
| 116 | 4 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> F : ( A (,) B ) --> RR ) |
| 117 | 5 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 118 | 6 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> K e. RR ) |
| 119 | 60 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ K ) |
| 120 | 47 | adantr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> x e. ( A (,) B ) ) |
| 121 | 41 | rexrd | |- ( x e. ( A (,) B ) -> x e. RR* ) |
| 122 | 121 | ad2antlr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> x e. RR* ) |
| 123 | 13 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> B e. RR* ) |
| 124 | 15 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> ( ( A + B ) / 2 ) e. RR ) |
| 125 | simpr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> x < ( ( A + B ) / 2 ) ) |
|
| 126 | 21 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> ( ( A + B ) / 2 ) < B ) |
| 127 | 122 123 124 125 126 | eliood | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> ( ( A + B ) / 2 ) e. ( x (,) B ) ) |
| 128 | 114 115 116 117 118 119 120 127 | dvbdfbdioolem1 | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> ( ( abs ` ( ( F ` ( ( A + B ) / 2 ) ) - ( F ` x ) ) ) <_ ( K x. ( ( ( A + B ) / 2 ) - x ) ) /\ ( abs ` ( ( F ` ( ( A + B ) / 2 ) ) - ( F ` x ) ) ) <_ ( K x. ( B - A ) ) ) ) |
| 129 | 128 | simprd | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> ( abs ` ( ( F ` ( ( A + B ) / 2 ) ) - ( F ` x ) ) ) <_ ( K x. ( B - A ) ) ) |
| 130 | 113 129 | eqbrtrd | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x < ( ( A + B ) / 2 ) ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 131 | 101 111 130 | syl2anc | |- ( ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) /\ -. ( ( A + B ) / 2 ) = x ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 132 | 100 131 | pm2.61dan | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. ( ( A + B ) / 2 ) < x ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 133 | 66 132 | pm2.61dan | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( F ` x ) - ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 134 | 27 35 32 36 133 | letrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( abs ` ( F ` x ) ) - ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( K x. ( B - A ) ) ) |
| 135 | 27 32 26 134 | leadd1dd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( abs ` ( F ` x ) ) - ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) + ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) <_ ( ( K x. ( B - A ) ) + ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) ) |
| 136 | 11 | recnd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( F ` x ) ) e. CC ) |
| 137 | 26 | recnd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) e. CC ) |
| 138 | 136 137 | npcand | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( abs ` ( F ` x ) ) - ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) + ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) = ( abs ` ( F ` x ) ) ) |
| 139 | 138 | eqcomd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( F ` x ) ) = ( ( ( abs ` ( F ` x ) ) - ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) + ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) ) |
| 140 | 25 | recnd | |- ( ph -> ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) e. CC ) |
| 141 | 6 | recnd | |- ( ph -> K e. CC ) |
| 142 | 2 | recnd | |- ( ph -> B e. CC ) |
| 143 | 1 | recnd | |- ( ph -> A e. CC ) |
| 144 | 142 143 | subcld | |- ( ph -> ( B - A ) e. CC ) |
| 145 | 141 144 | mulcld | |- ( ph -> ( K x. ( B - A ) ) e. CC ) |
| 146 | 140 145 | addcomd | |- ( ph -> ( ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) + ( K x. ( B - A ) ) ) = ( ( K x. ( B - A ) ) + ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) ) |
| 147 | 8 146 | eqtrid | |- ( ph -> M = ( ( K x. ( B - A ) ) + ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) ) |
| 148 | 147 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> M = ( ( K x. ( B - A ) ) + ( abs ` ( F ` ( ( A + B ) / 2 ) ) ) ) ) |
| 149 | 135 139 148 | 3brtr4d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( F ` x ) ) <_ M ) |
| 150 | 149 | ralrimiva | |- ( ph -> A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ M ) |