This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmcl.p | |- P = ( S Xs_ R ) |
|
| dsmmcl.h | |- H = ( Base ` ( S (+)m R ) ) |
||
| dsmmcl.i | |- ( ph -> I e. W ) |
||
| dsmmcl.s | |- ( ph -> S e. V ) |
||
| dsmmcl.r | |- ( ph -> R : I --> Mnd ) |
||
| dsmm0cl.z | |- .0. = ( 0g ` P ) |
||
| Assertion | dsmm0cl | |- ( ph -> .0. e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmcl.p | |- P = ( S Xs_ R ) |
|
| 2 | dsmmcl.h | |- H = ( Base ` ( S (+)m R ) ) |
|
| 3 | dsmmcl.i | |- ( ph -> I e. W ) |
|
| 4 | dsmmcl.s | |- ( ph -> S e. V ) |
|
| 5 | dsmmcl.r | |- ( ph -> R : I --> Mnd ) |
|
| 6 | dsmm0cl.z | |- .0. = ( 0g ` P ) |
|
| 7 | 1 3 4 5 | prdsmndd | |- ( ph -> P e. Mnd ) |
| 8 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 9 | 8 6 | mndidcl | |- ( P e. Mnd -> .0. e. ( Base ` P ) ) |
| 10 | 7 9 | syl | |- ( ph -> .0. e. ( Base ` P ) ) |
| 11 | 1 3 4 5 | prds0g | |- ( ph -> ( 0g o. R ) = ( 0g ` P ) ) |
| 12 | 11 6 | eqtr4di | |- ( ph -> ( 0g o. R ) = .0. ) |
| 13 | 12 | adantr | |- ( ( ph /\ a e. I ) -> ( 0g o. R ) = .0. ) |
| 14 | 13 | fveq1d | |- ( ( ph /\ a e. I ) -> ( ( 0g o. R ) ` a ) = ( .0. ` a ) ) |
| 15 | 5 | ffnd | |- ( ph -> R Fn I ) |
| 16 | fvco2 | |- ( ( R Fn I /\ a e. I ) -> ( ( 0g o. R ) ` a ) = ( 0g ` ( R ` a ) ) ) |
|
| 17 | 15 16 | sylan | |- ( ( ph /\ a e. I ) -> ( ( 0g o. R ) ` a ) = ( 0g ` ( R ` a ) ) ) |
| 18 | 14 17 | eqtr3d | |- ( ( ph /\ a e. I ) -> ( .0. ` a ) = ( 0g ` ( R ` a ) ) ) |
| 19 | nne | |- ( -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) <-> ( .0. ` a ) = ( 0g ` ( R ` a ) ) ) |
|
| 20 | 18 19 | sylibr | |- ( ( ph /\ a e. I ) -> -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) ) |
| 21 | 20 | ralrimiva | |- ( ph -> A. a e. I -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) ) |
| 22 | rabeq0 | |- ( { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } = (/) <-> A. a e. I -. ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) ) |
|
| 23 | 21 22 | sylibr | |- ( ph -> { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } = (/) ) |
| 24 | 0fi | |- (/) e. Fin |
|
| 25 | 23 24 | eqeltrdi | |- ( ph -> { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) |
| 26 | eqid | |- ( S (+)m R ) = ( S (+)m R ) |
|
| 27 | 1 26 8 2 3 15 | dsmmelbas | |- ( ph -> ( .0. e. H <-> ( .0. e. ( Base ` P ) /\ { a e. I | ( .0. ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) |
| 28 | 10 25 27 | mpbir2and | |- ( ph -> .0. e. H ) |