This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsgrpd.y | |- Y = ( S Xs_ R ) |
|
| prdsgrpd.i | |- ( ph -> I e. W ) |
||
| prdsgrpd.s | |- ( ph -> S e. V ) |
||
| prdsgrpd.r | |- ( ph -> R : I --> Grp ) |
||
| Assertion | prdsgrpd | |- ( ph -> Y e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsgrpd.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsgrpd.i | |- ( ph -> I e. W ) |
|
| 3 | prdsgrpd.s | |- ( ph -> S e. V ) |
|
| 4 | prdsgrpd.r | |- ( ph -> R : I --> Grp ) |
|
| 5 | eqidd | |- ( ph -> ( Base ` Y ) = ( Base ` Y ) ) |
|
| 6 | eqidd | |- ( ph -> ( +g ` Y ) = ( +g ` Y ) ) |
|
| 7 | grpmnd | |- ( a e. Grp -> a e. Mnd ) |
|
| 8 | 7 | ssriv | |- Grp C_ Mnd |
| 9 | fss | |- ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) |
|
| 10 | 4 8 9 | sylancl | |- ( ph -> R : I --> Mnd ) |
| 11 | 1 2 3 10 | prds0g | |- ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) |
| 12 | 1 2 3 10 | prdsmndd | |- ( ph -> Y e. Mnd ) |
| 13 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 14 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 15 | 3 | elexd | |- ( ph -> S e. _V ) |
| 16 | 15 | adantr | |- ( ( ph /\ a e. ( Base ` Y ) ) -> S e. _V ) |
| 17 | 2 | elexd | |- ( ph -> I e. _V ) |
| 18 | 17 | adantr | |- ( ( ph /\ a e. ( Base ` Y ) ) -> I e. _V ) |
| 19 | 4 | adantr | |- ( ( ph /\ a e. ( Base ` Y ) ) -> R : I --> Grp ) |
| 20 | simpr | |- ( ( ph /\ a e. ( Base ` Y ) ) -> a e. ( Base ` Y ) ) |
|
| 21 | eqid | |- ( 0g o. R ) = ( 0g o. R ) |
|
| 22 | eqid | |- ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) = ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
|
| 23 | 1 13 14 16 18 19 20 21 22 | prdsinvlem | |- ( ( ph /\ a e. ( Base ` Y ) ) -> ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) e. ( Base ` Y ) /\ ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) ( +g ` Y ) a ) = ( 0g o. R ) ) ) |
| 24 | 23 | simpld | |- ( ( ph /\ a e. ( Base ` Y ) ) -> ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) e. ( Base ` Y ) ) |
| 25 | 23 | simprd | |- ( ( ph /\ a e. ( Base ` Y ) ) -> ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) ( +g ` Y ) a ) = ( 0g o. R ) ) |
| 26 | 5 6 11 12 24 25 | isgrpd2 | |- ( ph -> Y e. Grp ) |