This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmcl.p | |- P = ( S Xs_ R ) |
|
| dsmmcl.h | |- H = ( Base ` ( S (+)m R ) ) |
||
| dsmmcl.i | |- ( ph -> I e. W ) |
||
| dsmmcl.s | |- ( ph -> S e. V ) |
||
| dsmmcl.r | |- ( ph -> R : I --> Mnd ) |
||
| dsmmacl.j | |- ( ph -> J e. H ) |
||
| dsmmacl.k | |- ( ph -> K e. H ) |
||
| dsmmacl.a | |- .+ = ( +g ` P ) |
||
| Assertion | dsmmacl | |- ( ph -> ( J .+ K ) e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmcl.p | |- P = ( S Xs_ R ) |
|
| 2 | dsmmcl.h | |- H = ( Base ` ( S (+)m R ) ) |
|
| 3 | dsmmcl.i | |- ( ph -> I e. W ) |
|
| 4 | dsmmcl.s | |- ( ph -> S e. V ) |
|
| 5 | dsmmcl.r | |- ( ph -> R : I --> Mnd ) |
|
| 6 | dsmmacl.j | |- ( ph -> J e. H ) |
|
| 7 | dsmmacl.k | |- ( ph -> K e. H ) |
|
| 8 | dsmmacl.a | |- .+ = ( +g ` P ) |
|
| 9 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 10 | eqid | |- ( S (+)m R ) = ( S (+)m R ) |
|
| 11 | 5 | ffnd | |- ( ph -> R Fn I ) |
| 12 | 1 10 9 2 3 11 | dsmmelbas | |- ( ph -> ( J e. H <-> ( J e. ( Base ` P ) /\ { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) |
| 13 | 6 12 | mpbid | |- ( ph -> ( J e. ( Base ` P ) /\ { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) |
| 14 | 13 | simpld | |- ( ph -> J e. ( Base ` P ) ) |
| 15 | 1 10 9 2 3 11 | dsmmelbas | |- ( ph -> ( K e. H <-> ( K e. ( Base ` P ) /\ { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) |
| 16 | 7 15 | mpbid | |- ( ph -> ( K e. ( Base ` P ) /\ { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) |
| 17 | 16 | simpld | |- ( ph -> K e. ( Base ` P ) ) |
| 18 | 1 9 8 4 3 5 14 17 | prdsplusgcl | |- ( ph -> ( J .+ K ) e. ( Base ` P ) ) |
| 19 | 4 | adantr | |- ( ( ph /\ a e. I ) -> S e. V ) |
| 20 | 3 | adantr | |- ( ( ph /\ a e. I ) -> I e. W ) |
| 21 | 11 | adantr | |- ( ( ph /\ a e. I ) -> R Fn I ) |
| 22 | 14 | adantr | |- ( ( ph /\ a e. I ) -> J e. ( Base ` P ) ) |
| 23 | 17 | adantr | |- ( ( ph /\ a e. I ) -> K e. ( Base ` P ) ) |
| 24 | simpr | |- ( ( ph /\ a e. I ) -> a e. I ) |
|
| 25 | 1 9 19 20 21 22 23 8 24 | prdsplusgfval | |- ( ( ph /\ a e. I ) -> ( ( J .+ K ) ` a ) = ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) ) |
| 26 | 25 | neeq1d | |- ( ( ph /\ a e. I ) -> ( ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) <-> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) ) ) |
| 27 | 26 | rabbidva | |- ( ph -> { a e. I | ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) } = { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } ) |
| 28 | 13 | simprd | |- ( ph -> { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) |
| 29 | 16 | simprd | |- ( ph -> { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) |
| 30 | unfi | |- ( ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin /\ { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) -> ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) e. Fin ) |
|
| 31 | 28 29 30 | syl2anc | |- ( ph -> ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) e. Fin ) |
| 32 | neorian | |- ( ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) <-> -. ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) ) |
|
| 33 | 32 | bicomi | |- ( -. ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) <-> ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) ) |
| 34 | 33 | con1bii | |- ( -. ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) <-> ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) ) |
| 35 | 5 | ffvelcdmda | |- ( ( ph /\ a e. I ) -> ( R ` a ) e. Mnd ) |
| 36 | eqid | |- ( Base ` ( R ` a ) ) = ( Base ` ( R ` a ) ) |
|
| 37 | eqid | |- ( 0g ` ( R ` a ) ) = ( 0g ` ( R ` a ) ) |
|
| 38 | 36 37 | mndidcl | |- ( ( R ` a ) e. Mnd -> ( 0g ` ( R ` a ) ) e. ( Base ` ( R ` a ) ) ) |
| 39 | eqid | |- ( +g ` ( R ` a ) ) = ( +g ` ( R ` a ) ) |
|
| 40 | 36 39 37 | mndlid | |- ( ( ( R ` a ) e. Mnd /\ ( 0g ` ( R ` a ) ) e. ( Base ` ( R ` a ) ) ) -> ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) = ( 0g ` ( R ` a ) ) ) |
| 41 | 35 38 40 | syl2anc2 | |- ( ( ph /\ a e. I ) -> ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) = ( 0g ` ( R ` a ) ) ) |
| 42 | oveq12 | |- ( ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) -> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) ) |
|
| 43 | 42 | eqeq1d | |- ( ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) -> ( ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( 0g ` ( R ` a ) ) <-> ( ( 0g ` ( R ` a ) ) ( +g ` ( R ` a ) ) ( 0g ` ( R ` a ) ) ) = ( 0g ` ( R ` a ) ) ) ) |
| 44 | 41 43 | syl5ibrcom | |- ( ( ph /\ a e. I ) -> ( ( ( J ` a ) = ( 0g ` ( R ` a ) ) /\ ( K ` a ) = ( 0g ` ( R ` a ) ) ) -> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( 0g ` ( R ` a ) ) ) ) |
| 45 | 34 44 | biimtrid | |- ( ( ph /\ a e. I ) -> ( -. ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) -> ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) = ( 0g ` ( R ` a ) ) ) ) |
| 46 | 45 | necon1ad | |- ( ( ph /\ a e. I ) -> ( ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) -> ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) ) ) |
| 47 | 46 | ss2rabdv | |- ( ph -> { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } C_ { a e. I | ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) } ) |
| 48 | unrab | |- ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) = { a e. I | ( ( J ` a ) =/= ( 0g ` ( R ` a ) ) \/ ( K ` a ) =/= ( 0g ` ( R ` a ) ) ) } |
|
| 49 | 47 48 | sseqtrrdi | |- ( ph -> { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } C_ ( { a e. I | ( J ` a ) =/= ( 0g ` ( R ` a ) ) } u. { a e. I | ( K ` a ) =/= ( 0g ` ( R ` a ) ) } ) ) |
| 50 | 31 49 | ssfid | |- ( ph -> { a e. I | ( ( J ` a ) ( +g ` ( R ` a ) ) ( K ` a ) ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) |
| 51 | 27 50 | eqeltrd | |- ( ph -> { a e. I | ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) |
| 52 | 1 10 9 2 3 11 | dsmmelbas | |- ( ph -> ( ( J .+ K ) e. H <-> ( ( J .+ K ) e. ( Base ` P ) /\ { a e. I | ( ( J .+ K ) ` a ) =/= ( 0g ` ( R ` a ) ) } e. Fin ) ) ) |
| 53 | 18 51 52 | mpbir2and | |- ( ph -> ( J .+ K ) e. H ) |