This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgrpd.s | |- ( ph -> S = ( I |`s D ) ) |
|
| issubgrpd.z | |- ( ph -> .0. = ( 0g ` I ) ) |
||
| issubgrpd.p | |- ( ph -> .+ = ( +g ` I ) ) |
||
| issubgrpd.ss | |- ( ph -> D C_ ( Base ` I ) ) |
||
| issubgrpd.zcl | |- ( ph -> .0. e. D ) |
||
| issubgrpd.acl | |- ( ( ph /\ x e. D /\ y e. D ) -> ( x .+ y ) e. D ) |
||
| issubgrpd.ncl | |- ( ( ph /\ x e. D ) -> ( ( invg ` I ) ` x ) e. D ) |
||
| issubgrpd.g | |- ( ph -> I e. Grp ) |
||
| Assertion | issubgrpd2 | |- ( ph -> D e. ( SubGrp ` I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.s | |- ( ph -> S = ( I |`s D ) ) |
|
| 2 | issubgrpd.z | |- ( ph -> .0. = ( 0g ` I ) ) |
|
| 3 | issubgrpd.p | |- ( ph -> .+ = ( +g ` I ) ) |
|
| 4 | issubgrpd.ss | |- ( ph -> D C_ ( Base ` I ) ) |
|
| 5 | issubgrpd.zcl | |- ( ph -> .0. e. D ) |
|
| 6 | issubgrpd.acl | |- ( ( ph /\ x e. D /\ y e. D ) -> ( x .+ y ) e. D ) |
|
| 7 | issubgrpd.ncl | |- ( ( ph /\ x e. D ) -> ( ( invg ` I ) ` x ) e. D ) |
|
| 8 | issubgrpd.g | |- ( ph -> I e. Grp ) |
|
| 9 | 5 | ne0d | |- ( ph -> D =/= (/) ) |
| 10 | 3 | oveqd | |- ( ph -> ( x .+ y ) = ( x ( +g ` I ) y ) ) |
| 11 | 10 | ad2antrr | |- ( ( ( ph /\ x e. D ) /\ y e. D ) -> ( x .+ y ) = ( x ( +g ` I ) y ) ) |
| 12 | 6 | 3expa | |- ( ( ( ph /\ x e. D ) /\ y e. D ) -> ( x .+ y ) e. D ) |
| 13 | 11 12 | eqeltrrd | |- ( ( ( ph /\ x e. D ) /\ y e. D ) -> ( x ( +g ` I ) y ) e. D ) |
| 14 | 13 | ralrimiva | |- ( ( ph /\ x e. D ) -> A. y e. D ( x ( +g ` I ) y ) e. D ) |
| 15 | 14 7 | jca | |- ( ( ph /\ x e. D ) -> ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) |
| 16 | 15 | ralrimiva | |- ( ph -> A. x e. D ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) |
| 17 | eqid | |- ( Base ` I ) = ( Base ` I ) |
|
| 18 | eqid | |- ( +g ` I ) = ( +g ` I ) |
|
| 19 | eqid | |- ( invg ` I ) = ( invg ` I ) |
|
| 20 | 17 18 19 | issubg2 | |- ( I e. Grp -> ( D e. ( SubGrp ` I ) <-> ( D C_ ( Base ` I ) /\ D =/= (/) /\ A. x e. D ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) ) ) |
| 21 | 8 20 | syl | |- ( ph -> ( D e. ( SubGrp ` I ) <-> ( D C_ ( Base ` I ) /\ D =/= (/) /\ A. x e. D ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) ) ) |
| 22 | 4 9 16 21 | mpbir3and | |- ( ph -> D e. ( SubGrp ` I ) ) |