This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dsmmval.b | |- B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
|
| Assertion | dsmmbase | |- ( R e. V -> B = ( Base ` ( S (+)m R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmval.b | |- B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
|
| 2 | elex | |- ( R e. V -> R e. _V ) |
|
| 3 | 1 | ssrab3 | |- B C_ ( Base ` ( S Xs_ R ) ) |
| 4 | eqid | |- ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s B ) |
|
| 5 | eqid | |- ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) |
|
| 6 | 4 5 | ressbas2 | |- ( B C_ ( Base ` ( S Xs_ R ) ) -> B = ( Base ` ( ( S Xs_ R ) |`s B ) ) ) |
| 7 | 3 6 | ax-mp | |- B = ( Base ` ( ( S Xs_ R ) |`s B ) ) |
| 8 | 1 | dsmmval | |- ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |
| 9 | 8 | fveq2d | |- ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s B ) ) ) |
| 10 | 7 9 | eqtr4id | |- ( R e. _V -> B = ( Base ` ( S (+)m R ) ) ) |
| 11 | 2 10 | syl | |- ( R e. V -> B = ( Base ` ( S (+)m R ) ) ) |