This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsinvgd2.y | |- Y = ( S Xs_ R ) |
|
| prdsinvgd2.i | |- ( ph -> I e. W ) |
||
| prdsinvgd2.s | |- ( ph -> S e. V ) |
||
| prdsinvgd2.r | |- ( ph -> R : I --> Grp ) |
||
| prdsinvgd2.b | |- B = ( Base ` Y ) |
||
| prdsinvgd2.n | |- N = ( invg ` Y ) |
||
| prdsinvgd2.x | |- ( ph -> X e. B ) |
||
| prdsinvgd2.j | |- ( ph -> J e. I ) |
||
| Assertion | prdsinvgd2 | |- ( ph -> ( ( N ` X ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsinvgd2.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsinvgd2.i | |- ( ph -> I e. W ) |
|
| 3 | prdsinvgd2.s | |- ( ph -> S e. V ) |
|
| 4 | prdsinvgd2.r | |- ( ph -> R : I --> Grp ) |
|
| 5 | prdsinvgd2.b | |- B = ( Base ` Y ) |
|
| 6 | prdsinvgd2.n | |- N = ( invg ` Y ) |
|
| 7 | prdsinvgd2.x | |- ( ph -> X e. B ) |
|
| 8 | prdsinvgd2.j | |- ( ph -> J e. I ) |
|
| 9 | 1 2 3 4 5 6 7 | prdsinvgd | |- ( ph -> ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ) |
| 10 | 9 | fveq1d | |- ( ph -> ( ( N ` X ) ` J ) = ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) ) |
| 11 | 2fveq3 | |- ( x = J -> ( invg ` ( R ` x ) ) = ( invg ` ( R ` J ) ) ) |
|
| 12 | fveq2 | |- ( x = J -> ( X ` x ) = ( X ` J ) ) |
|
| 13 | 11 12 | fveq12d | |- ( x = J -> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |
| 14 | eqid | |- ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) |
|
| 15 | fvex | |- ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) e. _V |
|
| 16 | 13 14 15 | fvmpt | |- ( J e. I -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |
| 17 | 8 16 | syl | |- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |
| 18 | 10 17 | eqtrd | |- ( ph -> ( ( N ` X ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |