This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsvscaval.t | |- .x. = ( .s ` Y ) |
||
| prdsvscaval.k | |- K = ( Base ` S ) |
||
| prdsvscaval.s | |- ( ph -> S e. V ) |
||
| prdsvscaval.i | |- ( ph -> I e. W ) |
||
| prdsvscaval.r | |- ( ph -> R Fn I ) |
||
| prdsvscaval.f | |- ( ph -> F e. K ) |
||
| prdsvscaval.g | |- ( ph -> G e. B ) |
||
| prdsvscafval.j | |- ( ph -> J e. I ) |
||
| Assertion | prdsvscafval | |- ( ph -> ( ( F .x. G ) ` J ) = ( F ( .s ` ( R ` J ) ) ( G ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsvscaval.t | |- .x. = ( .s ` Y ) |
|
| 4 | prdsvscaval.k | |- K = ( Base ` S ) |
|
| 5 | prdsvscaval.s | |- ( ph -> S e. V ) |
|
| 6 | prdsvscaval.i | |- ( ph -> I e. W ) |
|
| 7 | prdsvscaval.r | |- ( ph -> R Fn I ) |
|
| 8 | prdsvscaval.f | |- ( ph -> F e. K ) |
|
| 9 | prdsvscaval.g | |- ( ph -> G e. B ) |
|
| 10 | prdsvscafval.j | |- ( ph -> J e. I ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 | prdsvscaval | |- ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 12 | 2fveq3 | |- ( x = J -> ( .s ` ( R ` x ) ) = ( .s ` ( R ` J ) ) ) |
|
| 13 | eqidd | |- ( x = J -> F = F ) |
|
| 14 | fveq2 | |- ( x = J -> ( G ` x ) = ( G ` J ) ) |
|
| 15 | 12 13 14 | oveq123d | |- ( x = J -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) = ( F ( .s ` ( R ` J ) ) ( G ` J ) ) ) |
| 16 | 15 | adantl | |- ( ( ph /\ x = J ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) = ( F ( .s ` ( R ` J ) ) ( G ` J ) ) ) |
| 17 | ovexd | |- ( ph -> ( F ( .s ` ( R ` J ) ) ( G ` J ) ) e. _V ) |
|
| 18 | 11 16 10 17 | fvmptd | |- ( ph -> ( ( F .x. G ) ` J ) = ( F ( .s ` ( R ` J ) ) ( G ` J ) ) ) |