This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. ( hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvs0.f | |- F = ( Scalar ` W ) |
|
| lmodvs0.s | |- .x. = ( .s ` W ) |
||
| lmodvs0.k | |- K = ( Base ` F ) |
||
| lmodvs0.z | |- .0. = ( 0g ` W ) |
||
| Assertion | lmodvs0 | |- ( ( W e. LMod /\ X e. K ) -> ( X .x. .0. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvs0.f | |- F = ( Scalar ` W ) |
|
| 2 | lmodvs0.s | |- .x. = ( .s ` W ) |
|
| 3 | lmodvs0.k | |- K = ( Base ` F ) |
|
| 4 | lmodvs0.z | |- .0. = ( 0g ` W ) |
|
| 5 | 1 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 6 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 7 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 8 | 3 6 7 | ringrz | |- ( ( F e. Ring /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) ) |
| 9 | 5 8 | sylan | |- ( ( W e. LMod /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) ) |
| 10 | 9 | oveq1d | |- ( ( W e. LMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( ( 0g ` F ) .x. .0. ) ) |
| 11 | simpl | |- ( ( W e. LMod /\ X e. K ) -> W e. LMod ) |
|
| 12 | simpr | |- ( ( W e. LMod /\ X e. K ) -> X e. K ) |
|
| 13 | 5 | adantr | |- ( ( W e. LMod /\ X e. K ) -> F e. Ring ) |
| 14 | 3 7 | ring0cl | |- ( F e. Ring -> ( 0g ` F ) e. K ) |
| 15 | 13 14 | syl | |- ( ( W e. LMod /\ X e. K ) -> ( 0g ` F ) e. K ) |
| 16 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 17 | 16 4 | lmod0vcl | |- ( W e. LMod -> .0. e. ( Base ` W ) ) |
| 18 | 17 | adantr | |- ( ( W e. LMod /\ X e. K ) -> .0. e. ( Base ` W ) ) |
| 19 | 16 1 2 3 6 | lmodvsass | |- ( ( W e. LMod /\ ( X e. K /\ ( 0g ` F ) e. K /\ .0. e. ( Base ` W ) ) ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) ) |
| 20 | 11 12 15 18 19 | syl13anc | |- ( ( W e. LMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) ) |
| 21 | 16 1 2 7 4 | lmod0vs | |- ( ( W e. LMod /\ .0. e. ( Base ` W ) ) -> ( ( 0g ` F ) .x. .0. ) = .0. ) |
| 22 | 18 21 | syldan | |- ( ( W e. LMod /\ X e. K ) -> ( ( 0g ` F ) .x. .0. ) = .0. ) |
| 23 | 22 | oveq2d | |- ( ( W e. LMod /\ X e. K ) -> ( X .x. ( ( 0g ` F ) .x. .0. ) ) = ( X .x. .0. ) ) |
| 24 | 20 23 | eqtrd | |- ( ( W e. LMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. .0. ) ) |
| 25 | 10 24 22 | 3eqtr3d | |- ( ( W e. LMod /\ X e. K ) -> ( X .x. .0. ) = .0. ) |