This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct sum of a family of modules is a module. See also the remark in Lang p. 128. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmlss.i | |- ( ph -> I e. W ) |
|
| dsmmlss.s | |- ( ph -> S e. Ring ) |
||
| dsmmlss.r | |- ( ph -> R : I --> LMod ) |
||
| dsmmlss.k | |- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
||
| dsmmlmod.c | |- C = ( S (+)m R ) |
||
| Assertion | dsmmlmod | |- ( ph -> C e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmlss.i | |- ( ph -> I e. W ) |
|
| 2 | dsmmlss.s | |- ( ph -> S e. Ring ) |
|
| 3 | dsmmlss.r | |- ( ph -> R : I --> LMod ) |
|
| 4 | dsmmlss.k | |- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
|
| 5 | dsmmlmod.c | |- C = ( S (+)m R ) |
|
| 6 | eqid | |- ( S Xs_ R ) = ( S Xs_ R ) |
|
| 7 | 6 2 1 3 4 | prdslmodd | |- ( ph -> ( S Xs_ R ) e. LMod ) |
| 8 | eqid | |- ( LSubSp ` ( S Xs_ R ) ) = ( LSubSp ` ( S Xs_ R ) ) |
|
| 9 | eqid | |- ( Base ` ( S (+)m R ) ) = ( Base ` ( S (+)m R ) ) |
|
| 10 | 1 2 3 4 6 8 9 | dsmmlss | |- ( ph -> ( Base ` ( S (+)m R ) ) e. ( LSubSp ` ( S Xs_ R ) ) ) |
| 11 | 9 | dsmmval2 | |- ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
| 12 | 5 11 | eqtri | |- C = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
| 13 | 12 8 | lsslmod | |- ( ( ( S Xs_ R ) e. LMod /\ ( Base ` ( S (+)m R ) ) e. ( LSubSp ` ( S Xs_ R ) ) ) -> C e. LMod ) |
| 14 | 7 10 13 | syl2anc | |- ( ph -> C e. LMod ) |