This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdval.0 | |- .0. = ( 0g ` G ) |
|
| dprdval.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| Assertion | dprdval | |- ( ( G dom DProd S /\ dom S = I ) -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdval.0 | |- .0. = ( 0g ` G ) |
|
| 2 | dprdval.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | simpl | |- ( ( G dom DProd S /\ dom S = I ) -> G dom DProd S ) |
|
| 4 | reldmdprd | |- Rel dom DProd |
|
| 5 | 4 | brrelex2i | |- ( G dom DProd S -> S e. _V ) |
| 6 | 5 | adantr | |- ( ( G dom DProd S /\ dom S = I ) -> S e. _V ) |
| 7 | 4 | brrelex1i | |- ( G dom DProd s -> G e. _V ) |
| 8 | breq1 | |- ( g = G -> ( g dom DProd s <-> G dom DProd s ) ) |
|
| 9 | oveq1 | |- ( g = G -> ( g DProd s ) = ( G DProd s ) ) |
|
| 10 | fveq2 | |- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
|
| 11 | 10 1 | eqtr4di | |- ( g = G -> ( 0g ` g ) = .0. ) |
| 12 | 11 | breq2d | |- ( g = G -> ( h finSupp ( 0g ` g ) <-> h finSupp .0. ) ) |
| 13 | 12 | rabbidv | |- ( g = G -> { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } = { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } ) |
| 14 | oveq1 | |- ( g = G -> ( g gsum f ) = ( G gsum f ) ) |
|
| 15 | 13 14 | mpteq12dv | |- ( g = G -> ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) = ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) |
| 16 | 15 | rneqd | |- ( g = G -> ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) |
| 17 | 9 16 | eqeq12d | |- ( g = G -> ( ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) <-> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
| 18 | 8 17 | imbi12d | |- ( g = G -> ( ( g dom DProd s -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) <-> ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) ) |
| 19 | df-br | |- ( g dom DProd s <-> <. g , s >. e. dom DProd ) |
|
| 20 | fvex | |- ( s ` i ) e. _V |
|
| 21 | 20 | rgenw | |- A. i e. dom s ( s ` i ) e. _V |
| 22 | ixpexg | |- ( A. i e. dom s ( s ` i ) e. _V -> X_ i e. dom s ( s ` i ) e. _V ) |
|
| 23 | 21 22 | ax-mp | |- X_ i e. dom s ( s ` i ) e. _V |
| 24 | 23 | mptrabex | |- ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V |
| 25 | 24 | rnex | |- ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V |
| 26 | 25 | rgen2w | |- A. g e. Grp A. s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V |
| 27 | df-dprd | |- DProd = ( g e. Grp , s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } |-> ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
|
| 28 | 27 | fmpox | |- ( A. g e. Grp A. s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V <-> DProd : U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) --> _V ) |
| 29 | 26 28 | mpbi | |- DProd : U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) --> _V |
| 30 | 29 | fdmi | |- dom DProd = U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) |
| 31 | 30 | eleq2i | |- ( <. g , s >. e. dom DProd <-> <. g , s >. e. U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) ) |
| 32 | opeliunxp | |- ( <. g , s >. e. U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) <-> ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) ) |
|
| 33 | 19 31 32 | 3bitri | |- ( g dom DProd s <-> ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) ) |
| 34 | 27 | ovmpt4g | |- ( ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } /\ ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V ) -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
| 35 | 25 34 | mp3an3 | |- ( ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
| 36 | 33 35 | sylbi | |- ( g dom DProd s -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
| 37 | 18 36 | vtoclg | |- ( G e. _V -> ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
| 38 | 7 37 | mpcom | |- ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) |
| 39 | 38 | sbcth | |- ( S e. _V -> [. S / s ]. ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
| 40 | 6 39 | syl | |- ( ( G dom DProd S /\ dom S = I ) -> [. S / s ]. ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
| 41 | simpr | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> s = S ) |
|
| 42 | 41 | breq2d | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( G dom DProd s <-> G dom DProd S ) ) |
| 43 | 41 | oveq2d | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( G DProd s ) = ( G DProd S ) ) |
| 44 | 41 | dmeqd | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> dom s = dom S ) |
| 45 | simplr | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> dom S = I ) |
|
| 46 | 44 45 | eqtrd | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> dom s = I ) |
| 47 | 46 | ixpeq1d | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> X_ i e. dom s ( s ` i ) = X_ i e. I ( s ` i ) ) |
| 48 | 41 | fveq1d | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( s ` i ) = ( S ` i ) ) |
| 49 | 48 | ixpeq2dv | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> X_ i e. I ( s ` i ) = X_ i e. I ( S ` i ) ) |
| 50 | 47 49 | eqtrd | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> X_ i e. dom s ( s ` i ) = X_ i e. I ( S ` i ) ) |
| 51 | 50 | rabeqdv | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) |
| 52 | 51 2 | eqtr4di | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } = W ) |
| 53 | eqidd | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( G gsum f ) = ( G gsum f ) ) |
|
| 54 | 52 53 | mpteq12dv | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) = ( f e. W |-> ( G gsum f ) ) ) |
| 55 | 54 | rneqd | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) = ran ( f e. W |-> ( G gsum f ) ) ) |
| 56 | 43 55 | eqeq12d | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) <-> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) |
| 57 | 42 56 | imbi12d | |- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) <-> ( G dom DProd S -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) ) |
| 58 | 6 57 | sbcied | |- ( ( G dom DProd S /\ dom S = I ) -> ( [. S / s ]. ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) <-> ( G dom DProd S -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) ) |
| 59 | 40 58 | mpbid | |- ( ( G dom DProd S /\ dom S = I ) -> ( G dom DProd S -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) |
| 60 | 3 59 | mpd | |- ( ( G dom DProd S /\ dom S = I ) -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) |