This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprd2d.1 | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| dprd2d.2 | ⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) | ||
| dprd2d.3 | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐼 ) | ||
| dprd2d.4 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) | ||
| dprd2d.5 | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) | ||
| dprd2d.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| dprd2d.6 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) | ||
| Assertion | dprd2dlem1 | ⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) = ( 𝐺 DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd2d.1 | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| 2 | dprd2d.2 | ⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | dprd2d.3 | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐼 ) | |
| 4 | dprd2d.4 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) | |
| 5 | dprd2d.5 | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) | |
| 6 | dprd2d.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | dprd2d.6 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) | |
| 8 | dprdgrp | ⊢ ( 𝐺 dom DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → 𝐺 ∈ Grp ) | |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 11 | 10 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 12 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 13 | 9 11 12 | 3syl | ⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 14 | ffun | ⊢ ( 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑆 ) | |
| 15 | funiunfv | ⊢ ( Fun 𝑆 → ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) = ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) | |
| 16 | 2 14 15 | 3syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) = ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
| 17 | resss | ⊢ ( 𝐴 ↾ 𝐶 ) ⊆ 𝐴 | |
| 18 | 17 | sseli | ⊢ ( 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
| 19 | 1 2 3 4 5 6 | dprd2dlem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ) |
| 20 | 18 19 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ) |
| 21 | 1st2nd | ⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) | |
| 22 | 1 18 21 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) | |
| 24 | 22 23 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ ( 𝐴 ↾ 𝐶 ) ) |
| 25 | fvex | ⊢ ( 2nd ‘ 𝑥 ) ∈ V | |
| 26 | 25 | opelresi | ⊢ ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ ( 𝐴 ↾ 𝐶 ) ↔ ( ( 1st ‘ 𝑥 ) ∈ 𝐶 ∧ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ 𝐴 ) ) |
| 27 | 26 | simplbi | ⊢ ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ ( 𝐴 ↾ 𝐶 ) → ( 1st ‘ 𝑥 ) ∈ 𝐶 ) |
| 28 | 24 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 1st ‘ 𝑥 ) ∈ 𝐶 ) |
| 29 | ovex | ⊢ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ V | |
| 30 | eqid | ⊢ ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) | |
| 31 | sneq | ⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → { 𝑖 } = { ( 1st ‘ 𝑥 ) } ) | |
| 32 | 31 | imaeq2d | ⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝐴 “ { 𝑖 } ) = ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ) |
| 33 | oveq1 | ⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝑖 𝑆 𝑗 ) = ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) | |
| 34 | 32 33 | mpteq12dv | ⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ) |
| 36 | 30 35 | elrnmpt1s | ⊢ ( ( ( 1st ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ V ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 37 | 28 29 36 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 38 | elssuni | ⊢ ( ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 40 | 20 39 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 41 | 40 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 42 | iunss | ⊢ ( ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) | |
| 43 | 41 42 | sylibr | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 44 | 16 43 | eqsstrrd | ⊢ ( 𝜑 → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 45 | 7 | sselda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → 𝑖 ∈ 𝐼 ) |
| 46 | 45 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) |
| 47 | ovex | ⊢ ( 𝑖 𝑆 𝑗 ) ∈ V | |
| 48 | eqid | ⊢ ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) | |
| 49 | 47 48 | dmmpti | ⊢ dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝐴 “ { 𝑖 } ) |
| 50 | 49 | a1i | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝐴 “ { 𝑖 } ) ) |
| 51 | imassrn | ⊢ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ran 𝑆 | |
| 52 | 2 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 53 | mresspw | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) | |
| 54 | 13 53 | syl | ⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 55 | 52 54 | sstrd | ⊢ ( 𝜑 → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 56 | 51 55 | sstrid | ⊢ ( 𝜑 → ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 57 | sspwuni | ⊢ ( ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 58 | 56 57 | sylib | ⊢ ( 𝜑 → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 59 | 6 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 60 | 13 58 59 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 61 | 60 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 62 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑖 𝑆 𝑗 ) = ( 𝑖 𝑆 𝑘 ) ) | |
| 63 | 62 48 47 | fvmpt3i | ⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) = ( 𝑖 𝑆 𝑘 ) ) |
| 64 | 63 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) = ( 𝑖 𝑆 𝑘 ) ) |
| 65 | df-ov | ⊢ ( 𝑖 𝑆 𝑘 ) = ( 𝑆 ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 66 | 2 | ffnd | ⊢ ( 𝜑 → 𝑆 Fn 𝐴 ) |
| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑆 Fn 𝐴 ) |
| 68 | 17 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝐴 ↾ 𝐶 ) ⊆ 𝐴 ) |
| 69 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑖 ∈ 𝐶 ) | |
| 70 | elrelimasn | ⊢ ( Rel 𝐴 → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) ) | |
| 71 | 1 70 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) ) |
| 73 | 72 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑖 𝐴 𝑘 ) |
| 74 | df-br | ⊢ ( 𝑖 𝐴 𝑘 ↔ 〈 𝑖 , 𝑘 〉 ∈ 𝐴 ) | |
| 75 | 73 74 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 〈 𝑖 , 𝑘 〉 ∈ 𝐴 ) |
| 76 | vex | ⊢ 𝑘 ∈ V | |
| 77 | 76 | opelresi | ⊢ ( 〈 𝑖 , 𝑘 〉 ∈ ( 𝐴 ↾ 𝐶 ) ↔ ( 𝑖 ∈ 𝐶 ∧ 〈 𝑖 , 𝑘 〉 ∈ 𝐴 ) ) |
| 78 | 69 75 77 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝐴 ↾ 𝐶 ) ) |
| 79 | fnfvima | ⊢ ( ( 𝑆 Fn 𝐴 ∧ ( 𝐴 ↾ 𝐶 ) ⊆ 𝐴 ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑆 ‘ 〈 𝑖 , 𝑘 〉 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) | |
| 80 | 67 68 78 79 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑆 ‘ 〈 𝑖 , 𝑘 〉 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
| 81 | 65 80 | eqeltrid | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
| 82 | elssuni | ⊢ ( ( 𝑖 𝑆 𝑘 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) | |
| 83 | 81 82 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
| 84 | 13 6 58 | mrcssidd | ⊢ ( 𝜑 → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 85 | 84 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 86 | 83 85 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 87 | 64 86 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 88 | 46 50 61 87 | dprdlub | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 89 | ovex | ⊢ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ V | |
| 90 | 89 | elpw | ⊢ ( ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ↔ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 91 | 88 90 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 92 | 91 | fmpttd | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) : 𝐶 ⟶ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 93 | 92 | frnd | ⊢ ( 𝜑 → ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 94 | sspwuni | ⊢ ( ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ↔ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) | |
| 95 | 93 94 | sylib | ⊢ ( 𝜑 → ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 96 | 13 6 | mrcssvd | ⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 97 | 95 96 | sstrd | ⊢ ( 𝜑 → ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 98 | 13 6 44 97 | mrcssd | ⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ⊆ ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
| 99 | 6 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∧ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 100 | 13 95 60 99 | syl3anc | ⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
| 101 | 98 100 | eqssd | ⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) = ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
| 102 | eqid | ⊢ ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) | |
| 103 | 89 102 | dmmpti | ⊢ dom ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼 |
| 104 | 103 | a1i | ⊢ ( 𝜑 → dom ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼 ) |
| 105 | 5 104 7 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ∧ ( 𝐺 DProd ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) ) |
| 106 | 105 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ) |
| 107 | 7 | resmptd | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) = ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 108 | 106 107 | breqtrd | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
| 109 | 6 | dprdspan | ⊢ ( 𝐺 dom DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → ( 𝐺 DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) = ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
| 110 | 108 109 | syl | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) = ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
| 111 | 101 110 | eqtr4d | ⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) = ( 𝐺 DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |