This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domdifsn | |- ( A ~< B -> A ~<_ ( B \ { C } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 2 | relsdom | |- Rel ~< |
|
| 3 | 2 | brrelex2i | |- ( A ~< B -> B e. _V ) |
| 4 | brdomg | |- ( B e. _V -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
|
| 5 | 3 4 | syl | |- ( A ~< B -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
| 6 | 1 5 | mpbid | |- ( A ~< B -> E. f f : A -1-1-> B ) |
| 7 | 6 | adantr | |- ( ( A ~< B /\ C e. B ) -> E. f f : A -1-1-> B ) |
| 8 | f1f | |- ( f : A -1-1-> B -> f : A --> B ) |
|
| 9 | 8 | frnd | |- ( f : A -1-1-> B -> ran f C_ B ) |
| 10 | 9 | adantl | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ran f C_ B ) |
| 11 | sdomnen | |- ( A ~< B -> -. A ~~ B ) |
|
| 12 | 11 | ad2antrr | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> -. A ~~ B ) |
| 13 | vex | |- f e. _V |
|
| 14 | dff1o5 | |- ( f : A -1-1-onto-> B <-> ( f : A -1-1-> B /\ ran f = B ) ) |
|
| 15 | 14 | biimpri | |- ( ( f : A -1-1-> B /\ ran f = B ) -> f : A -1-1-onto-> B ) |
| 16 | f1oen3g | |- ( ( f e. _V /\ f : A -1-1-onto-> B ) -> A ~~ B ) |
|
| 17 | 13 15 16 | sylancr | |- ( ( f : A -1-1-> B /\ ran f = B ) -> A ~~ B ) |
| 18 | 17 | ex | |- ( f : A -1-1-> B -> ( ran f = B -> A ~~ B ) ) |
| 19 | 18 | necon3bd | |- ( f : A -1-1-> B -> ( -. A ~~ B -> ran f =/= B ) ) |
| 20 | 19 | adantl | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( -. A ~~ B -> ran f =/= B ) ) |
| 21 | 12 20 | mpd | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ran f =/= B ) |
| 22 | pssdifn0 | |- ( ( ran f C_ B /\ ran f =/= B ) -> ( B \ ran f ) =/= (/) ) |
|
| 23 | 10 21 22 | syl2anc | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( B \ ran f ) =/= (/) ) |
| 24 | n0 | |- ( ( B \ ran f ) =/= (/) <-> E. x x e. ( B \ ran f ) ) |
|
| 25 | 23 24 | sylib | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> E. x x e. ( B \ ran f ) ) |
| 26 | 2 | brrelex1i | |- ( A ~< B -> A e. _V ) |
| 27 | 26 | ad2antrr | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> A e. _V ) |
| 28 | 3 | ad2antrr | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> B e. _V ) |
| 29 | 28 | difexd | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> ( B \ { x } ) e. _V ) |
| 30 | eldifn | |- ( x e. ( B \ ran f ) -> -. x e. ran f ) |
|
| 31 | disjsn | |- ( ( ran f i^i { x } ) = (/) <-> -. x e. ran f ) |
|
| 32 | 30 31 | sylibr | |- ( x e. ( B \ ran f ) -> ( ran f i^i { x } ) = (/) ) |
| 33 | 32 | adantl | |- ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ( ran f i^i { x } ) = (/) ) |
| 34 | 9 | adantr | |- ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ran f C_ B ) |
| 35 | reldisj | |- ( ran f C_ B -> ( ( ran f i^i { x } ) = (/) <-> ran f C_ ( B \ { x } ) ) ) |
|
| 36 | 34 35 | syl | |- ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ( ( ran f i^i { x } ) = (/) <-> ran f C_ ( B \ { x } ) ) ) |
| 37 | 33 36 | mpbid | |- ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ran f C_ ( B \ { x } ) ) |
| 38 | f1ssr | |- ( ( f : A -1-1-> B /\ ran f C_ ( B \ { x } ) ) -> f : A -1-1-> ( B \ { x } ) ) |
|
| 39 | 37 38 | syldan | |- ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> f : A -1-1-> ( B \ { x } ) ) |
| 40 | 39 | adantl | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> f : A -1-1-> ( B \ { x } ) ) |
| 41 | f1dom2g | |- ( ( A e. _V /\ ( B \ { x } ) e. _V /\ f : A -1-1-> ( B \ { x } ) ) -> A ~<_ ( B \ { x } ) ) |
|
| 42 | 27 29 40 41 | syl3anc | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> A ~<_ ( B \ { x } ) ) |
| 43 | eldifi | |- ( x e. ( B \ ran f ) -> x e. B ) |
|
| 44 | 43 | ad2antll | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> x e. B ) |
| 45 | simplr | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> C e. B ) |
|
| 46 | difsnen | |- ( ( B e. _V /\ x e. B /\ C e. B ) -> ( B \ { x } ) ~~ ( B \ { C } ) ) |
|
| 47 | 28 44 45 46 | syl3anc | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> ( B \ { x } ) ~~ ( B \ { C } ) ) |
| 48 | domentr | |- ( ( A ~<_ ( B \ { x } ) /\ ( B \ { x } ) ~~ ( B \ { C } ) ) -> A ~<_ ( B \ { C } ) ) |
|
| 49 | 42 47 48 | syl2anc | |- ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> A ~<_ ( B \ { C } ) ) |
| 50 | 49 | expr | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( x e. ( B \ ran f ) -> A ~<_ ( B \ { C } ) ) ) |
| 51 | 50 | exlimdv | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( E. x x e. ( B \ ran f ) -> A ~<_ ( B \ { C } ) ) ) |
| 52 | 25 51 | mpd | |- ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> A ~<_ ( B \ { C } ) ) |
| 53 | 7 52 | exlimddv | |- ( ( A ~< B /\ C e. B ) -> A ~<_ ( B \ { C } ) ) |
| 54 | 1 | adantr | |- ( ( A ~< B /\ -. C e. B ) -> A ~<_ B ) |
| 55 | difsn | |- ( -. C e. B -> ( B \ { C } ) = B ) |
|
| 56 | 55 | breq2d | |- ( -. C e. B -> ( A ~<_ ( B \ { C } ) <-> A ~<_ B ) ) |
| 57 | 56 | adantl | |- ( ( A ~< B /\ -. C e. B ) -> ( A ~<_ ( B \ { C } ) <-> A ~<_ B ) ) |
| 58 | 54 57 | mpbird | |- ( ( A ~< B /\ -. C e. B ) -> A ~<_ ( B \ { C } ) ) |
| 59 | 53 58 | pm2.61dan | |- ( A ~< B -> A ~<_ ( B \ { C } ) ) |