This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ssr | |- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A -1-1-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn | |- ( F : A -1-1-> B -> F Fn A ) |
|
| 2 | 1 | adantr | |- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F Fn A ) |
| 3 | simpr | |- ( ( F : A -1-1-> B /\ ran F C_ C ) -> ran F C_ C ) |
|
| 4 | df-f | |- ( F : A --> C <-> ( F Fn A /\ ran F C_ C ) ) |
|
| 5 | 2 3 4 | sylanbrc | |- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A --> C ) |
| 6 | df-f1 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
|
| 7 | 6 | simprbi | |- ( F : A -1-1-> B -> Fun `' F ) |
| 8 | 7 | adantr | |- ( ( F : A -1-1-> B /\ ran F C_ C ) -> Fun `' F ) |
| 9 | df-f1 | |- ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) ) |
|
| 10 | 5 8 9 | sylanbrc | |- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A -1-1-> C ) |