This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dff1o5 | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ ran F = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
| 2 | dffo2 | |- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) ) |
|
| 3 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 4 | 3 | biantrurd | |- ( F : A -1-1-> B -> ( ran F = B <-> ( F : A --> B /\ ran F = B ) ) ) |
| 5 | 2 4 | bitr4id | |- ( F : A -1-1-> B -> ( F : A -onto-> B <-> ran F = B ) ) |
| 6 | 5 | pm5.32i | |- ( ( F : A -1-1-> B /\ F : A -onto-> B ) <-> ( F : A -1-1-> B /\ ran F = B ) ) |
| 7 | 1 6 | bitri | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ ran F = B ) ) |