This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domdifsn | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 2 | relsdom | ⊢ Rel ≺ | |
| 3 | 2 | brrelex2i | ⊢ ( 𝐴 ≺ 𝐵 → 𝐵 ∈ V ) |
| 4 | brdomg | ⊢ ( 𝐵 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ≺ 𝐵 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 6 | 1 5 | mpbid | ⊢ ( 𝐴 ≺ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 8 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 9 | 8 | frnd | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ran 𝑓 ⊆ 𝐵 ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ran 𝑓 ⊆ 𝐵 ) |
| 11 | sdomnen | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) | |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 13 | vex | ⊢ 𝑓 ∈ V | |
| 14 | dff1o5 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ran 𝑓 = 𝐵 ) ) | |
| 15 | 14 | biimpri | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ran 𝑓 = 𝐵 ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 16 | f1oen3g | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 17 | 13 15 16 | sylancr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ran 𝑓 = 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 18 | 17 | ex | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ran 𝑓 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 19 | 18 | necon3bd | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ¬ 𝐴 ≈ 𝐵 → ran 𝑓 ≠ 𝐵 ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( ¬ 𝐴 ≈ 𝐵 → ran 𝑓 ≠ 𝐵 ) ) |
| 21 | 12 20 | mpd | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ran 𝑓 ≠ 𝐵 ) |
| 22 | pssdifn0 | ⊢ ( ( ran 𝑓 ⊆ 𝐵 ∧ ran 𝑓 ≠ 𝐵 ) → ( 𝐵 ∖ ran 𝑓 ) ≠ ∅ ) | |
| 23 | 10 21 22 | syl2anc | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( 𝐵 ∖ ran 𝑓 ) ≠ ∅ ) |
| 24 | n0 | ⊢ ( ( 𝐵 ∖ ran 𝑓 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ∃ 𝑥 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) |
| 26 | 2 | brrelex1i | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ∈ V ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → 𝐴 ∈ V ) |
| 28 | 3 | ad2antrr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → 𝐵 ∈ V ) |
| 29 | 28 | difexd | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → ( 𝐵 ∖ { 𝑥 } ) ∈ V ) |
| 30 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) → ¬ 𝑥 ∈ ran 𝑓 ) | |
| 31 | disjsn | ⊢ ( ( ran 𝑓 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ran 𝑓 ) | |
| 32 | 30 31 | sylibr | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) → ( ran 𝑓 ∩ { 𝑥 } ) = ∅ ) |
| 33 | 32 | adantl | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) → ( ran 𝑓 ∩ { 𝑥 } ) = ∅ ) |
| 34 | 9 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) → ran 𝑓 ⊆ 𝐵 ) |
| 35 | reldisj | ⊢ ( ran 𝑓 ⊆ 𝐵 → ( ( ran 𝑓 ∩ { 𝑥 } ) = ∅ ↔ ran 𝑓 ⊆ ( 𝐵 ∖ { 𝑥 } ) ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) → ( ( ran 𝑓 ∩ { 𝑥 } ) = ∅ ↔ ran 𝑓 ⊆ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 37 | 33 36 | mpbid | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) → ran 𝑓 ⊆ ( 𝐵 ∖ { 𝑥 } ) ) |
| 38 | f1ssr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ran 𝑓 ⊆ ( 𝐵 ∖ { 𝑥 } ) ) → 𝑓 : 𝐴 –1-1→ ( 𝐵 ∖ { 𝑥 } ) ) | |
| 39 | 37 38 | syldan | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) → 𝑓 : 𝐴 –1-1→ ( 𝐵 ∖ { 𝑥 } ) ) |
| 40 | 39 | adantl | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → 𝑓 : 𝐴 –1-1→ ( 𝐵 ∖ { 𝑥 } ) ) |
| 41 | f1dom2g | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐵 ∖ { 𝑥 } ) ∈ V ∧ 𝑓 : 𝐴 –1-1→ ( 𝐵 ∖ { 𝑥 } ) ) → 𝐴 ≼ ( 𝐵 ∖ { 𝑥 } ) ) | |
| 42 | 27 29 40 41 | syl3anc | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → 𝐴 ≼ ( 𝐵 ∖ { 𝑥 } ) ) |
| 43 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) → 𝑥 ∈ 𝐵 ) | |
| 44 | 43 | ad2antll | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 45 | simplr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → 𝐶 ∈ 𝐵 ) | |
| 46 | difsnen | ⊢ ( ( 𝐵 ∈ V ∧ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐵 ∖ { 𝑥 } ) ≈ ( 𝐵 ∖ { 𝐶 } ) ) | |
| 47 | 28 44 45 46 | syl3anc | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → ( 𝐵 ∖ { 𝑥 } ) ≈ ( 𝐵 ∖ { 𝐶 } ) ) |
| 48 | domentr | ⊢ ( ( 𝐴 ≼ ( 𝐵 ∖ { 𝑥 } ) ∧ ( 𝐵 ∖ { 𝑥 } ) ≈ ( 𝐵 ∖ { 𝐶 } ) ) → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) | |
| 49 | 42 47 48 | syl2anc | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) ) ) → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) |
| 50 | 49 | expr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) ) |
| 51 | 50 | exlimdv | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐵 ∖ ran 𝑓 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) ) |
| 52 | 25 51 | mpd | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) |
| 53 | 7 52 | exlimddv | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) |
| 54 | 1 | adantr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
| 55 | difsn | ⊢ ( ¬ 𝐶 ∈ 𝐵 → ( 𝐵 ∖ { 𝐶 } ) = 𝐵 ) | |
| 56 | 55 | breq2d | ⊢ ( ¬ 𝐶 ∈ 𝐵 → ( 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ↔ 𝐴 ≼ 𝐵 ) ) |
| 57 | 56 | adantl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵 ) → ( 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ↔ 𝐴 ≼ 𝐵 ) ) |
| 58 | 54 57 | mpbird | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) |
| 59 | 53 58 | pm2.61dan | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ ( 𝐵 ∖ { 𝐶 } ) ) |