This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdenle | |- ( ( A e. ZZ /\ B e. NN ) -> ( denom ` ( A / B ) ) <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divnumden | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( numer ` ( A / B ) ) = ( A / ( A gcd B ) ) /\ ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) ) |
|
| 2 | 1 | simprd | |- ( ( A e. ZZ /\ B e. NN ) -> ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) |
| 3 | simpl | |- ( ( A e. ZZ /\ B e. NN ) -> A e. ZZ ) |
|
| 4 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 5 | 4 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. ZZ ) |
| 6 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 7 | 6 | neneqd | |- ( B e. NN -> -. B = 0 ) |
| 8 | 7 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> -. B = 0 ) |
| 9 | 8 | intnand | |- ( ( A e. ZZ /\ B e. NN ) -> -. ( A = 0 /\ B = 0 ) ) |
| 10 | gcdn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
|
| 11 | 3 5 9 10 | syl21anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) e. NN ) |
| 12 | 11 | nnge1d | |- ( ( A e. ZZ /\ B e. NN ) -> 1 <_ ( A gcd B ) ) |
| 13 | 1red | |- ( ( A e. ZZ /\ B e. NN ) -> 1 e. RR ) |
|
| 14 | 0lt1 | |- 0 < 1 |
|
| 15 | 14 | a1i | |- ( ( A e. ZZ /\ B e. NN ) -> 0 < 1 ) |
| 16 | 11 | nnred | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) e. RR ) |
| 17 | 11 | nngt0d | |- ( ( A e. ZZ /\ B e. NN ) -> 0 < ( A gcd B ) ) |
| 18 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 19 | 18 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. RR ) |
| 20 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 21 | 20 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> 0 < B ) |
| 22 | lediv2 | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 <_ ( A gcd B ) <-> ( B / ( A gcd B ) ) <_ ( B / 1 ) ) ) |
|
| 23 | 13 15 16 17 19 21 22 | syl222anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( 1 <_ ( A gcd B ) <-> ( B / ( A gcd B ) ) <_ ( B / 1 ) ) ) |
| 24 | 12 23 | mpbid | |- ( ( A e. ZZ /\ B e. NN ) -> ( B / ( A gcd B ) ) <_ ( B / 1 ) ) |
| 25 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 26 | 25 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. CC ) |
| 27 | 26 | div1d | |- ( ( A e. ZZ /\ B e. NN ) -> ( B / 1 ) = B ) |
| 28 | 24 27 | breqtrd | |- ( ( A e. ZZ /\ B e. NN ) -> ( B / ( A gcd B ) ) <_ B ) |
| 29 | 2 28 | eqbrtrd | |- ( ( A e. ZZ /\ B e. NN ) -> ( denom ` ( A / B ) ) <_ B ) |