This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-to-one relationship for division. (Contributed by NM, 20-Apr-2006) (Proof shortened by Mario Carneiro, 27-May-2016) (Proof shortened by SN, 9-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div11 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) e. CC ) |
|
| 2 | 1 | 3expb | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 3 | 2 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 4 | divmul3 | |- ( ( A e. CC /\ ( B / C ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = ( ( B / C ) x. C ) ) ) |
|
| 5 | 3 4 | syld3an2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = ( ( B / C ) x. C ) ) ) |
| 6 | divcan1 | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( B / C ) x. C ) = B ) |
|
| 7 | 6 | 3expb | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B / C ) x. C ) = B ) |
| 8 | 7 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B / C ) x. C ) = B ) |
| 9 | 8 | eqeq2d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A = ( ( B / C ) x. C ) <-> A = B ) ) |
| 10 | 5 9 | bitrd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = B ) ) |