This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime ): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdcoprmex | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> E. a e. ZZ E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( B e. ZZ /\ B =/= 0 ) -> B e. ZZ ) |
|
| 2 | 1 | anim2i | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 3 | zeqzmulgcd | |- ( ( A e. ZZ /\ B e. ZZ ) -> E. a e. ZZ A = ( a x. ( A gcd B ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> E. a e. ZZ A = ( a x. ( A gcd B ) ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> E. a e. ZZ A = ( a x. ( A gcd B ) ) ) |
| 6 | zeqzmulgcd | |- ( ( B e. ZZ /\ A e. ZZ ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
|
| 7 | 6 | adantlr | |- ( ( ( B e. ZZ /\ B =/= 0 ) /\ A e. ZZ ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
| 8 | 7 | ancoms | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
| 9 | 8 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
| 10 | reeanv | |- ( E. a e. ZZ E. b e. ZZ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) <-> ( E. a e. ZZ A = ( a x. ( A gcd B ) ) /\ E. b e. ZZ B = ( b x. ( B gcd A ) ) ) ) |
|
| 11 | zcn | |- ( a e. ZZ -> a e. CC ) |
|
| 12 | 11 | adantl | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> a e. CC ) |
| 13 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 14 | 2 13 | syl | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A gcd B ) e. NN0 ) |
| 15 | 14 | nn0cnd | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A gcd B ) e. CC ) |
| 16 | 15 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. CC ) |
| 17 | 16 | adantr | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( A gcd B ) e. CC ) |
| 18 | 12 17 | mulcomd | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( a x. ( A gcd B ) ) = ( ( A gcd B ) x. a ) ) |
| 19 | simp3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> M = ( A gcd B ) ) |
|
| 20 | 19 | eqcomd | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) = M ) |
| 21 | 20 | oveq1d | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( A gcd B ) x. a ) = ( M x. a ) ) |
| 22 | 21 | adantr | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( ( A gcd B ) x. a ) = ( M x. a ) ) |
| 23 | 18 22 | eqtrd | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( a x. ( A gcd B ) ) = ( M x. a ) ) |
| 24 | 23 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( a x. ( A gcd B ) ) = ( M x. a ) ) |
| 25 | eqeq1 | |- ( A = ( a x. ( A gcd B ) ) -> ( A = ( M x. a ) <-> ( a x. ( A gcd B ) ) = ( M x. a ) ) ) |
|
| 26 | 25 | adantr | |- ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> ( A = ( M x. a ) <-> ( a x. ( A gcd B ) ) = ( M x. a ) ) ) |
| 27 | 26 | adantl | |- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( A = ( M x. a ) <-> ( a x. ( A gcd B ) ) = ( M x. a ) ) ) |
| 28 | 24 27 | mpbird | |- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> A = ( M x. a ) ) |
| 29 | simpr | |- ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> B = ( b x. ( B gcd A ) ) ) |
|
| 30 | 2 | ancomd | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( B e. ZZ /\ A e. ZZ ) ) |
| 31 | gcdcom | |- ( ( B e. ZZ /\ A e. ZZ ) -> ( B gcd A ) = ( A gcd B ) ) |
|
| 32 | 30 31 | syl | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( B gcd A ) = ( A gcd B ) ) |
| 33 | 32 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( B gcd A ) = ( A gcd B ) ) |
| 34 | 33 | oveq2d | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( b x. ( B gcd A ) ) = ( b x. ( A gcd B ) ) ) |
| 35 | 34 | adantr | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( b x. ( B gcd A ) ) = ( b x. ( A gcd B ) ) ) |
| 36 | zcn | |- ( b e. ZZ -> b e. CC ) |
|
| 37 | 36 | adantl | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> b e. CC ) |
| 38 | 14 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. NN0 ) |
| 39 | 38 | adantr | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( A gcd B ) e. NN0 ) |
| 40 | 39 | nn0cnd | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( A gcd B ) e. CC ) |
| 41 | 37 40 | mulcomd | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( b x. ( A gcd B ) ) = ( ( A gcd B ) x. b ) ) |
| 42 | 20 | adantr | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( A gcd B ) = M ) |
| 43 | 42 | oveq1d | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( ( A gcd B ) x. b ) = ( M x. b ) ) |
| 44 | 35 41 43 | 3eqtrd | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( b x. ( B gcd A ) ) = ( M x. b ) ) |
| 45 | 44 | adantlr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( b x. ( B gcd A ) ) = ( M x. b ) ) |
| 46 | 29 45 | sylan9eqr | |- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> B = ( M x. b ) ) |
| 47 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 48 | 47 | 3ad2ant1 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> A e. CC ) |
| 49 | 48 | ad2antrr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> A e. CC ) |
| 50 | 12 | adantr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> a e. CC ) |
| 51 | simp1 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> A e. ZZ ) |
|
| 52 | 1 | 3ad2ant2 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> B e. ZZ ) |
| 53 | 51 52 | gcdcld | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. NN0 ) |
| 54 | 53 | nn0cnd | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. CC ) |
| 55 | 54 | ad2antrr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A gcd B ) e. CC ) |
| 56 | gcdeq0 | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
|
| 57 | simpr | |- ( ( A = 0 /\ B = 0 ) -> B = 0 ) |
|
| 58 | 56 57 | biimtrdi | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) = 0 -> B = 0 ) ) |
| 59 | 58 | necon3d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( B =/= 0 -> ( A gcd B ) =/= 0 ) ) |
| 60 | 59 | impr | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A gcd B ) =/= 0 ) |
| 61 | 60 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) =/= 0 ) |
| 62 | 61 | ad2antrr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A gcd B ) =/= 0 ) |
| 63 | 49 50 55 62 | divmul3d | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A / ( A gcd B ) ) = a <-> A = ( a x. ( A gcd B ) ) ) ) |
| 64 | 63 | bicomd | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A = ( a x. ( A gcd B ) ) <-> ( A / ( A gcd B ) ) = a ) ) |
| 65 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 66 | 65 | adantr | |- ( ( B e. ZZ /\ B =/= 0 ) -> B e. CC ) |
| 67 | 66 | 3ad2ant2 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> B e. CC ) |
| 68 | 67 | ad2antrr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> B e. CC ) |
| 69 | 36 | adantl | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> b e. CC ) |
| 70 | 68 69 55 62 | divmul3d | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( B / ( A gcd B ) ) = b <-> B = ( b x. ( A gcd B ) ) ) ) |
| 71 | 2 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 72 | gcdcom | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
|
| 73 | 71 72 | syl | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) = ( B gcd A ) ) |
| 74 | 73 | ad2antrr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
| 75 | 74 | oveq2d | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( b x. ( A gcd B ) ) = ( b x. ( B gcd A ) ) ) |
| 76 | 75 | eqeq2d | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( B = ( b x. ( A gcd B ) ) <-> B = ( b x. ( B gcd A ) ) ) ) |
| 77 | 70 76 | bitr2d | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( B = ( b x. ( B gcd A ) ) <-> ( B / ( A gcd B ) ) = b ) ) |
| 78 | 64 77 | anbi12d | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) <-> ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) ) ) |
| 79 | 3anass | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) <-> ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) ) |
|
| 80 | 79 | biimpri | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) ) |
| 81 | 80 | 3adant3 | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) ) |
| 82 | divgcdcoprm0 | |- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
|
| 83 | 81 82 | syl | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
| 84 | oveq12 | |- ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = ( a gcd b ) ) |
|
| 85 | 84 | eqeq1d | |- ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 <-> ( a gcd b ) = 1 ) ) |
| 86 | 83 85 | syl5ibcom | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( a gcd b ) = 1 ) ) |
| 87 | 86 | ad2antrr | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( a gcd b ) = 1 ) ) |
| 88 | 78 87 | sylbid | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> ( a gcd b ) = 1 ) ) |
| 89 | 88 | imp | |- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( a gcd b ) = 1 ) |
| 90 | 28 46 89 | 3jca | |- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) |
| 91 | 90 | ex | |- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
| 92 | 91 | reximdva | |- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( E. b e. ZZ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
| 93 | 92 | reximdva | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> E. a e. ZZ E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
| 94 | 10 93 | biimtrrid | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( E. a e. ZZ A = ( a x. ( A gcd B ) ) /\ E. b e. ZZ B = ( b x. ( B gcd A ) ) ) -> E. a e. ZZ E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
| 95 | 5 9 94 | mp2and | |- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> E. a e. ZZ E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) |