This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converse of bezout for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bezoutr1 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = 1 -> ( A gcd B ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezoutr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || ( ( A x. X ) + ( B x. Y ) ) ) |
|
| 2 | 1 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) || ( ( A x. X ) + ( B x. Y ) ) ) |
| 3 | simpr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( ( A x. X ) + ( B x. Y ) ) = 1 ) |
|
| 4 | 2 3 | breqtrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) || 1 ) |
| 5 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 6 | 5 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 7 | 6 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) e. ZZ ) |
| 8 | 1nn | |- 1 e. NN |
|
| 9 | 8 | a1i | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> 1 e. NN ) |
| 10 | dvdsle | |- ( ( ( A gcd B ) e. ZZ /\ 1 e. NN ) -> ( ( A gcd B ) || 1 -> ( A gcd B ) <_ 1 ) ) |
|
| 11 | 7 9 10 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( ( A gcd B ) || 1 -> ( A gcd B ) <_ 1 ) ) |
| 12 | 4 11 | mpd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) <_ 1 ) |
| 13 | simpll | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A e. ZZ /\ B e. ZZ ) ) |
|
| 14 | oveq1 | |- ( A = 0 -> ( A x. X ) = ( 0 x. X ) ) |
|
| 15 | oveq1 | |- ( B = 0 -> ( B x. Y ) = ( 0 x. Y ) ) |
|
| 16 | 14 15 | oveqan12d | |- ( ( A = 0 /\ B = 0 ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( 0 x. X ) + ( 0 x. Y ) ) ) |
| 17 | zcn | |- ( X e. ZZ -> X e. CC ) |
|
| 18 | 17 | mul02d | |- ( X e. ZZ -> ( 0 x. X ) = 0 ) |
| 19 | zcn | |- ( Y e. ZZ -> Y e. CC ) |
|
| 20 | 19 | mul02d | |- ( Y e. ZZ -> ( 0 x. Y ) = 0 ) |
| 21 | 18 20 | oveqan12d | |- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( 0 x. X ) + ( 0 x. Y ) ) = ( 0 + 0 ) ) |
| 22 | 16 21 | sylan9eqr | |- ( ( ( X e. ZZ /\ Y e. ZZ ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) = ( 0 + 0 ) ) |
| 23 | 00id | |- ( 0 + 0 ) = 0 |
|
| 24 | 22 23 | eqtrdi | |- ( ( ( X e. ZZ /\ Y e. ZZ ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) = 0 ) |
| 25 | 24 | adantll | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) = 0 ) |
| 26 | 0ne1 | |- 0 =/= 1 |
|
| 27 | 26 | a1i | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( A = 0 /\ B = 0 ) ) -> 0 =/= 1 ) |
| 28 | 25 27 | eqnetrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) =/= 1 ) |
| 29 | 28 | ex | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( A = 0 /\ B = 0 ) -> ( ( A x. X ) + ( B x. Y ) ) =/= 1 ) ) |
| 30 | 29 | necon2bd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = 1 -> -. ( A = 0 /\ B = 0 ) ) ) |
| 31 | 30 | imp | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> -. ( A = 0 /\ B = 0 ) ) |
| 32 | gcdn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
|
| 33 | 13 31 32 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) e. NN ) |
| 34 | nnle1eq1 | |- ( ( A gcd B ) e. NN -> ( ( A gcd B ) <_ 1 <-> ( A gcd B ) = 1 ) ) |
|
| 35 | 33 34 | syl | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( ( A gcd B ) <_ 1 <-> ( A gcd B ) = 1 ) ) |
| 36 | 12 35 | mpbid | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) = 1 ) |
| 37 | 36 | ex | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = 1 -> ( A gcd B ) = 1 ) ) |