This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of the mod operator satisfies the requirements for the remainder R in the division algorithm for a positive divisor (compare divalg2 and divalgb ). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by AV, 21-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divalgmod | |- ( ( N e. ZZ /\ D e. NN ) -> ( R = ( N mod D ) <-> ( R e. NN0 /\ ( R < D /\ D || ( N - R ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( N mod D ) e. _V |
|
| 2 | 1 | snid | |- ( N mod D ) e. { ( N mod D ) } |
| 3 | eleq1 | |- ( R = ( N mod D ) -> ( R e. { ( N mod D ) } <-> ( N mod D ) e. { ( N mod D ) } ) ) |
|
| 4 | 2 3 | mpbiri | |- ( R = ( N mod D ) -> R e. { ( N mod D ) } ) |
| 5 | elsni | |- ( R e. { ( N mod D ) } -> R = ( N mod D ) ) |
|
| 6 | 4 5 | impbii | |- ( R = ( N mod D ) <-> R e. { ( N mod D ) } ) |
| 7 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 8 | nnrp | |- ( D e. NN -> D e. RR+ ) |
|
| 9 | modlt | |- ( ( N e. RR /\ D e. RR+ ) -> ( N mod D ) < D ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) < D ) |
| 11 | nnre | |- ( D e. NN -> D e. RR ) |
|
| 12 | nnne0 | |- ( D e. NN -> D =/= 0 ) |
|
| 13 | redivcl | |- ( ( N e. RR /\ D e. RR /\ D =/= 0 ) -> ( N / D ) e. RR ) |
|
| 14 | 7 11 12 13 | syl3an | |- ( ( N e. ZZ /\ D e. NN /\ D e. NN ) -> ( N / D ) e. RR ) |
| 15 | 14 | 3anidm23 | |- ( ( N e. ZZ /\ D e. NN ) -> ( N / D ) e. RR ) |
| 16 | 15 | flcld | |- ( ( N e. ZZ /\ D e. NN ) -> ( |_ ` ( N / D ) ) e. ZZ ) |
| 17 | nnz | |- ( D e. NN -> D e. ZZ ) |
|
| 18 | 17 | adantl | |- ( ( N e. ZZ /\ D e. NN ) -> D e. ZZ ) |
| 19 | zmodcl | |- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) e. NN0 ) |
|
| 20 | 19 | nn0zd | |- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) e. ZZ ) |
| 21 | zsubcl | |- ( ( N e. ZZ /\ ( N mod D ) e. ZZ ) -> ( N - ( N mod D ) ) e. ZZ ) |
|
| 22 | 20 21 | syldan | |- ( ( N e. ZZ /\ D e. NN ) -> ( N - ( N mod D ) ) e. ZZ ) |
| 23 | nncn | |- ( D e. NN -> D e. CC ) |
|
| 24 | 23 | adantl | |- ( ( N e. ZZ /\ D e. NN ) -> D e. CC ) |
| 25 | 16 | zcnd | |- ( ( N e. ZZ /\ D e. NN ) -> ( |_ ` ( N / D ) ) e. CC ) |
| 26 | 24 25 | mulcomd | |- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) = ( ( |_ ` ( N / D ) ) x. D ) ) |
| 27 | modval | |- ( ( N e. RR /\ D e. RR+ ) -> ( N mod D ) = ( N - ( D x. ( |_ ` ( N / D ) ) ) ) ) |
|
| 28 | 7 8 27 | syl2an | |- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) = ( N - ( D x. ( |_ ` ( N / D ) ) ) ) ) |
| 29 | 19 | nn0cnd | |- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) e. CC ) |
| 30 | zmulcl | |- ( ( D e. ZZ /\ ( |_ ` ( N / D ) ) e. ZZ ) -> ( D x. ( |_ ` ( N / D ) ) ) e. ZZ ) |
|
| 31 | 17 16 30 | syl2an2 | |- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) e. ZZ ) |
| 32 | 31 | zcnd | |- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) e. CC ) |
| 33 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 34 | 33 | adantr | |- ( ( N e. ZZ /\ D e. NN ) -> N e. CC ) |
| 35 | 29 32 34 | subexsub | |- ( ( N e. ZZ /\ D e. NN ) -> ( ( N mod D ) = ( N - ( D x. ( |_ ` ( N / D ) ) ) ) <-> ( D x. ( |_ ` ( N / D ) ) ) = ( N - ( N mod D ) ) ) ) |
| 36 | 28 35 | mpbid | |- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) = ( N - ( N mod D ) ) ) |
| 37 | 26 36 | eqtr3d | |- ( ( N e. ZZ /\ D e. NN ) -> ( ( |_ ` ( N / D ) ) x. D ) = ( N - ( N mod D ) ) ) |
| 38 | dvds0lem | |- ( ( ( ( |_ ` ( N / D ) ) e. ZZ /\ D e. ZZ /\ ( N - ( N mod D ) ) e. ZZ ) /\ ( ( |_ ` ( N / D ) ) x. D ) = ( N - ( N mod D ) ) ) -> D || ( N - ( N mod D ) ) ) |
|
| 39 | 16 18 22 37 38 | syl31anc | |- ( ( N e. ZZ /\ D e. NN ) -> D || ( N - ( N mod D ) ) ) |
| 40 | divalg2 | |- ( ( N e. ZZ /\ D e. NN ) -> E! z e. NN0 ( z < D /\ D || ( N - z ) ) ) |
|
| 41 | breq1 | |- ( z = ( N mod D ) -> ( z < D <-> ( N mod D ) < D ) ) |
|
| 42 | oveq2 | |- ( z = ( N mod D ) -> ( N - z ) = ( N - ( N mod D ) ) ) |
|
| 43 | 42 | breq2d | |- ( z = ( N mod D ) -> ( D || ( N - z ) <-> D || ( N - ( N mod D ) ) ) ) |
| 44 | 41 43 | anbi12d | |- ( z = ( N mod D ) -> ( ( z < D /\ D || ( N - z ) ) <-> ( ( N mod D ) < D /\ D || ( N - ( N mod D ) ) ) ) ) |
| 45 | 44 | riota2 | |- ( ( ( N mod D ) e. NN0 /\ E! z e. NN0 ( z < D /\ D || ( N - z ) ) ) -> ( ( ( N mod D ) < D /\ D || ( N - ( N mod D ) ) ) <-> ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) = ( N mod D ) ) ) |
| 46 | 19 40 45 | syl2anc | |- ( ( N e. ZZ /\ D e. NN ) -> ( ( ( N mod D ) < D /\ D || ( N - ( N mod D ) ) ) <-> ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) = ( N mod D ) ) ) |
| 47 | 10 39 46 | mpbi2and | |- ( ( N e. ZZ /\ D e. NN ) -> ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) = ( N mod D ) ) |
| 48 | 47 | eqcomd | |- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) = ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) ) |
| 49 | 48 | sneqd | |- ( ( N e. ZZ /\ D e. NN ) -> { ( N mod D ) } = { ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) } ) |
| 50 | snriota | |- ( E! z e. NN0 ( z < D /\ D || ( N - z ) ) -> { z e. NN0 | ( z < D /\ D || ( N - z ) ) } = { ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) } ) |
|
| 51 | 40 50 | syl | |- ( ( N e. ZZ /\ D e. NN ) -> { z e. NN0 | ( z < D /\ D || ( N - z ) ) } = { ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) } ) |
| 52 | 49 51 | eqtr4d | |- ( ( N e. ZZ /\ D e. NN ) -> { ( N mod D ) } = { z e. NN0 | ( z < D /\ D || ( N - z ) ) } ) |
| 53 | 52 | eleq2d | |- ( ( N e. ZZ /\ D e. NN ) -> ( R e. { ( N mod D ) } <-> R e. { z e. NN0 | ( z < D /\ D || ( N - z ) ) } ) ) |
| 54 | 6 53 | bitrid | |- ( ( N e. ZZ /\ D e. NN ) -> ( R = ( N mod D ) <-> R e. { z e. NN0 | ( z < D /\ D || ( N - z ) ) } ) ) |
| 55 | breq1 | |- ( z = R -> ( z < D <-> R < D ) ) |
|
| 56 | oveq2 | |- ( z = R -> ( N - z ) = ( N - R ) ) |
|
| 57 | 56 | breq2d | |- ( z = R -> ( D || ( N - z ) <-> D || ( N - R ) ) ) |
| 58 | 55 57 | anbi12d | |- ( z = R -> ( ( z < D /\ D || ( N - z ) ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
| 59 | 58 | elrab | |- ( R e. { z e. NN0 | ( z < D /\ D || ( N - z ) ) } <-> ( R e. NN0 /\ ( R < D /\ D || ( N - R ) ) ) ) |
| 60 | 54 59 | bitrdi | |- ( ( N e. ZZ /\ D e. NN ) -> ( R = ( N mod D ) <-> ( R e. NN0 /\ ( R < D /\ D || ( N - R ) ) ) ) ) |