This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snriota | |- ( E! x e. A ph -> { x e. A | ph } = { ( iota_ x e. A ph ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu | |- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
|
| 2 | sniota | |- ( E! x ( x e. A /\ ph ) -> { x | ( x e. A /\ ph ) } = { ( iota x ( x e. A /\ ph ) ) } ) |
|
| 3 | 1 2 | sylbi | |- ( E! x e. A ph -> { x | ( x e. A /\ ph ) } = { ( iota x ( x e. A /\ ph ) ) } ) |
| 4 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 5 | df-riota | |- ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) ) |
|
| 6 | 5 | sneqi | |- { ( iota_ x e. A ph ) } = { ( iota x ( x e. A /\ ph ) ) } |
| 7 | 3 4 6 | 3eqtr4g | |- ( E! x e. A ph -> { x e. A | ph } = { ( iota_ x e. A ph ) } ) |