This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the division algorithm as stated in divalg in terms of || . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divalgb | |- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | |- ( ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ N = ( ( q x. D ) + r ) ) ) |
|
| 2 | 1 | rexbii | |- ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E. q e. ZZ ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ N = ( ( q x. D ) + r ) ) ) |
| 3 | r19.42v | |- ( E. q e. ZZ ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + r ) ) ) |
|
| 4 | 2 3 | bitri | |- ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + r ) ) ) |
| 5 | zsubcl | |- ( ( N e. ZZ /\ r e. ZZ ) -> ( N - r ) e. ZZ ) |
|
| 6 | divides | |- ( ( D e. ZZ /\ ( N - r ) e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) |
|
| 7 | 5 6 | sylan2 | |- ( ( D e. ZZ /\ ( N e. ZZ /\ r e. ZZ ) ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) |
| 8 | 7 | 3impb | |- ( ( D e. ZZ /\ N e. ZZ /\ r e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) |
| 9 | 8 | 3com12 | |- ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) |
| 10 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 11 | zcn | |- ( r e. ZZ -> r e. CC ) |
|
| 12 | zmulcl | |- ( ( q e. ZZ /\ D e. ZZ ) -> ( q x. D ) e. ZZ ) |
|
| 13 | 12 | zcnd | |- ( ( q e. ZZ /\ D e. ZZ ) -> ( q x. D ) e. CC ) |
| 14 | subadd | |- ( ( N e. CC /\ r e. CC /\ ( q x. D ) e. CC ) -> ( ( N - r ) = ( q x. D ) <-> ( r + ( q x. D ) ) = N ) ) |
|
| 15 | 10 11 13 14 | syl3an | |- ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( N - r ) = ( q x. D ) <-> ( r + ( q x. D ) ) = N ) ) |
| 16 | addcom | |- ( ( r e. CC /\ ( q x. D ) e. CC ) -> ( r + ( q x. D ) ) = ( ( q x. D ) + r ) ) |
|
| 17 | 11 13 16 | syl2an | |- ( ( r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( r + ( q x. D ) ) = ( ( q x. D ) + r ) ) |
| 18 | 17 | 3adant1 | |- ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( r + ( q x. D ) ) = ( ( q x. D ) + r ) ) |
| 19 | 18 | eqeq1d | |- ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( r + ( q x. D ) ) = N <-> ( ( q x. D ) + r ) = N ) ) |
| 20 | 15 19 | bitrd | |- ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( N - r ) = ( q x. D ) <-> ( ( q x. D ) + r ) = N ) ) |
| 21 | eqcom | |- ( ( N - r ) = ( q x. D ) <-> ( q x. D ) = ( N - r ) ) |
|
| 22 | eqcom | |- ( ( ( q x. D ) + r ) = N <-> N = ( ( q x. D ) + r ) ) |
|
| 23 | 20 21 22 | 3bitr3g | |- ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) |
| 24 | 23 | 3expia | |- ( ( N e. ZZ /\ r e. ZZ ) -> ( ( q e. ZZ /\ D e. ZZ ) -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) ) |
| 25 | 24 | expcomd | |- ( ( N e. ZZ /\ r e. ZZ ) -> ( D e. ZZ -> ( q e. ZZ -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) ) ) |
| 26 | 25 | 3impia | |- ( ( N e. ZZ /\ r e. ZZ /\ D e. ZZ ) -> ( q e. ZZ -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) ) |
| 27 | 26 | imp | |- ( ( ( N e. ZZ /\ r e. ZZ /\ D e. ZZ ) /\ q e. ZZ ) -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) |
| 28 | 27 | rexbidva | |- ( ( N e. ZZ /\ r e. ZZ /\ D e. ZZ ) -> ( E. q e. ZZ ( q x. D ) = ( N - r ) <-> E. q e. ZZ N = ( ( q x. D ) + r ) ) ) |
| 29 | 28 | 3com23 | |- ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( E. q e. ZZ ( q x. D ) = ( N - r ) <-> E. q e. ZZ N = ( ( q x. D ) + r ) ) ) |
| 30 | 9 29 | bitrd | |- ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ N = ( ( q x. D ) + r ) ) ) |
| 31 | 30 | anbi2d | |- ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ D || ( N - r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + r ) ) ) ) |
| 32 | 4 31 | bitr4id | |- ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ D || ( N - r ) ) ) ) |
| 33 | anass | |- ( ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ D || ( N - r ) ) <-> ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |
|
| 34 | 32 33 | bitrdi | |- ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) |
| 35 | 34 | 3expa | |- ( ( ( N e. ZZ /\ D e. ZZ ) /\ r e. ZZ ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) |
| 36 | 35 | reubidva | |- ( ( N e. ZZ /\ D e. ZZ ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. ZZ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) |
| 37 | elnn0z | |- ( r e. NN0 <-> ( r e. ZZ /\ 0 <_ r ) ) |
|
| 38 | 37 | anbi1i | |- ( ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> ( ( r e. ZZ /\ 0 <_ r ) /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |
| 39 | anass | |- ( ( ( r e. ZZ /\ 0 <_ r ) /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) |
|
| 40 | 38 39 | bitri | |- ( ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) |
| 41 | 40 | eubii | |- ( E! r ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> E! r ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) |
| 42 | df-reu | |- ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |
|
| 43 | df-reu | |- ( E! r e. ZZ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> E! r ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) |
|
| 44 | 41 42 43 | 3bitr4ri | |- ( E! r e. ZZ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) |
| 45 | 36 44 | bitrdi | |- ( ( N e. ZZ /\ D e. ZZ ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |
| 46 | 45 | 3adant3 | |- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |