This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divalg2 | |- ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( D e. NN -> D e. ZZ ) |
|
| 2 | nnne0 | |- ( D e. NN -> D =/= 0 ) |
|
| 3 | 1 2 | jca | |- ( D e. NN -> ( D e. ZZ /\ D =/= 0 ) ) |
| 4 | divalg | |- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) |
|
| 5 | divalgb | |- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |
|
| 6 | 4 5 | mpbid | |- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) |
| 7 | 6 | 3expb | |- ( ( N e. ZZ /\ ( D e. ZZ /\ D =/= 0 ) ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) |
| 8 | 3 7 | sylan2 | |- ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) |
| 9 | nnre | |- ( D e. NN -> D e. RR ) |
|
| 10 | nnnn0 | |- ( D e. NN -> D e. NN0 ) |
|
| 11 | 10 | nn0ge0d | |- ( D e. NN -> 0 <_ D ) |
| 12 | 9 11 | absidd | |- ( D e. NN -> ( abs ` D ) = D ) |
| 13 | 12 | breq2d | |- ( D e. NN -> ( r < ( abs ` D ) <-> r < D ) ) |
| 14 | 13 | anbi1d | |- ( D e. NN -> ( ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> ( r < D /\ D || ( N - r ) ) ) ) |
| 15 | 14 | reubidv | |- ( D e. NN -> ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) ) |
| 16 | 15 | adantl | |- ( ( N e. ZZ /\ D e. NN ) -> ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) ) |
| 17 | 8 16 | mpbid | |- ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) |