This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| cnmpt21.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| cnmpt2c.l | |- ( ph -> L e. ( TopOn ` Z ) ) |
||
| cnmpt2c.p | |- ( ph -> P e. Z ) |
||
| Assertion | cnmpt2c | |- ( ph -> ( x e. X , y e. Y |-> P ) e. ( ( J tX K ) Cn L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | cnmpt21.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | cnmpt2c.l | |- ( ph -> L e. ( TopOn ` Z ) ) |
|
| 4 | cnmpt2c.p | |- ( ph -> P e. Z ) |
|
| 5 | eqidd | |- ( z = <. x , y >. -> P = P ) |
|
| 6 | 5 | mpompt | |- ( z e. ( X X. Y ) |-> P ) = ( x e. X , y e. Y |-> P ) |
| 7 | txtopon | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 9 | 8 3 4 | cnmptc | |- ( ph -> ( z e. ( X X. Y ) |-> P ) e. ( ( J tX K ) Cn L ) ) |
| 10 | 6 9 | eqeltrrid | |- ( ph -> ( x e. X , y e. Y |-> P ) e. ( ( J tX K ) Cn L ) ) |