This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| dipfval.2 | |- G = ( +v ` U ) |
||
| dipfval.4 | |- S = ( .sOLD ` U ) |
||
| dipfval.6 | |- N = ( normCV ` U ) |
||
| dipfval.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipfval | |- ( U e. NrmCVec -> P = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipfval.2 | |- G = ( +v ` U ) |
|
| 3 | dipfval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | dipfval.6 | |- N = ( normCV ` U ) |
|
| 5 | dipfval.7 | |- P = ( .iOLD ` U ) |
|
| 6 | fveq2 | |- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( u = U -> ( BaseSet ` u ) = X ) |
| 8 | fveq2 | |- ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) |
|
| 9 | 8 4 | eqtr4di | |- ( u = U -> ( normCV ` u ) = N ) |
| 10 | fveq2 | |- ( u = U -> ( +v ` u ) = ( +v ` U ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( u = U -> ( +v ` u ) = G ) |
| 12 | eqidd | |- ( u = U -> x = x ) |
|
| 13 | fveq2 | |- ( u = U -> ( .sOLD ` u ) = ( .sOLD ` U ) ) |
|
| 14 | 13 3 | eqtr4di | |- ( u = U -> ( .sOLD ` u ) = S ) |
| 15 | 14 | oveqd | |- ( u = U -> ( ( _i ^ k ) ( .sOLD ` u ) y ) = ( ( _i ^ k ) S y ) ) |
| 16 | 11 12 15 | oveq123d | |- ( u = U -> ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) = ( x G ( ( _i ^ k ) S y ) ) ) |
| 17 | 9 16 | fveq12d | |- ( u = U -> ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) = ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ) |
| 18 | 17 | oveq1d | |- ( u = U -> ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) = ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) |
| 19 | 18 | oveq2d | |- ( u = U -> ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) = ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
| 20 | 19 | sumeq2sdv | |- ( u = U -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
| 21 | 20 | oveq1d | |- ( u = U -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) |
| 22 | 7 7 21 | mpoeq123dv | |- ( u = U -> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| 23 | df-dip | |- .iOLD = ( u e. NrmCVec |-> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) ) |
|
| 24 | 1 | fvexi | |- X e. _V |
| 25 | 24 24 | mpoex | |- ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) e. _V |
| 26 | 22 23 25 | fvmpt | |- ( U e. NrmCVec -> ( .iOLD ` U ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| 27 | 5 26 | eqtrid | |- ( U e. NrmCVec -> P = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |