This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| cnmpt21.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| cnmpt21.a | |- ( ph -> ( x e. X , y e. Y |-> A ) e. ( ( J tX K ) Cn L ) ) |
||
| cnmpt21f.f | |- ( ph -> F e. ( L Cn M ) ) |
||
| Assertion | cnmpt21f | |- ( ph -> ( x e. X , y e. Y |-> ( F ` A ) ) e. ( ( J tX K ) Cn M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | cnmpt21.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | cnmpt21.a | |- ( ph -> ( x e. X , y e. Y |-> A ) e. ( ( J tX K ) Cn L ) ) |
|
| 4 | cnmpt21f.f | |- ( ph -> F e. ( L Cn M ) ) |
|
| 5 | cntop1 | |- ( F e. ( L Cn M ) -> L e. Top ) |
|
| 6 | 4 5 | syl | |- ( ph -> L e. Top ) |
| 7 | toptopon2 | |- ( L e. Top <-> L e. ( TopOn ` U. L ) ) |
|
| 8 | 6 7 | sylib | |- ( ph -> L e. ( TopOn ` U. L ) ) |
| 9 | eqid | |- U. L = U. L |
|
| 10 | eqid | |- U. M = U. M |
|
| 11 | 9 10 | cnf | |- ( F e. ( L Cn M ) -> F : U. L --> U. M ) |
| 12 | 4 11 | syl | |- ( ph -> F : U. L --> U. M ) |
| 13 | 12 | feqmptd | |- ( ph -> F = ( z e. U. L |-> ( F ` z ) ) ) |
| 14 | 13 4 | eqeltrrd | |- ( ph -> ( z e. U. L |-> ( F ` z ) ) e. ( L Cn M ) ) |
| 15 | fveq2 | |- ( z = A -> ( F ` z ) = ( F ` A ) ) |
|
| 16 | 1 2 3 8 14 15 | cnmpt21 | |- ( ph -> ( x e. X , y e. Y |-> ( F ` A ) ) e. ( ( J tX K ) Cn M ) ) |