This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed complex vector space is a continuous function to CC . (For RR , see nmcvcn .) (Contributed by NM, 12-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcnc.1 | |- N = ( normCV ` U ) |
|
| nmcnc.2 | |- C = ( IndMet ` U ) |
||
| nmcnc.j | |- J = ( MetOpen ` C ) |
||
| nmcnc.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | nmcnc | |- ( U e. NrmCVec -> N e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcnc.1 | |- N = ( normCV ` U ) |
|
| 2 | nmcnc.2 | |- C = ( IndMet ` U ) |
|
| 3 | nmcnc.j | |- J = ( MetOpen ` C ) |
|
| 4 | nmcnc.k | |- K = ( TopOpen ` CCfld ) |
|
| 5 | 4 | cnfldtop | |- K e. Top |
| 6 | cnrest2r | |- ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) ) |
|
| 7 | 5 6 | ax-mp | |- ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) |
| 8 | 4 | tgioo2 | |- ( topGen ` ran (,) ) = ( K |`t RR ) |
| 9 | 8 | eqcomi | |- ( K |`t RR ) = ( topGen ` ran (,) ) |
| 10 | 1 2 3 9 | nmcvcn | |- ( U e. NrmCVec -> N e. ( J Cn ( K |`t RR ) ) ) |
| 11 | 7 10 | sselid | |- ( U e. NrmCVec -> N e. ( J Cn K ) ) |