This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fsumcn for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcn.3 | |- K = ( TopOpen ` CCfld ) |
|
| fsumcn.4 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| fsumcn.5 | |- ( ph -> A e. Fin ) |
||
| fsum2cn.7 | |- ( ph -> L e. ( TopOn ` Y ) ) |
||
| fsum2cn.8 | |- ( ( ph /\ k e. A ) -> ( x e. X , y e. Y |-> B ) e. ( ( J tX L ) Cn K ) ) |
||
| Assertion | fsum2cn | |- ( ph -> ( x e. X , y e. Y |-> sum_ k e. A B ) e. ( ( J tX L ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcn.3 | |- K = ( TopOpen ` CCfld ) |
|
| 2 | fsumcn.4 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | fsumcn.5 | |- ( ph -> A e. Fin ) |
|
| 4 | fsum2cn.7 | |- ( ph -> L e. ( TopOn ` Y ) ) |
|
| 5 | fsum2cn.8 | |- ( ( ph /\ k e. A ) -> ( x e. X , y e. Y |-> B ) e. ( ( J tX L ) Cn K ) ) |
|
| 6 | nfcv | |- F/_ u sum_ k e. A B |
|
| 7 | nfcv | |- F/_ v sum_ k e. A B |
|
| 8 | nfcv | |- F/_ x A |
|
| 9 | nfcv | |- F/_ x v |
|
| 10 | nfcsb1v | |- F/_ x [_ u / x ]_ B |
|
| 11 | 9 10 | nfcsbw | |- F/_ x [_ v / y ]_ [_ u / x ]_ B |
| 12 | 8 11 | nfsum | |- F/_ x sum_ k e. A [_ v / y ]_ [_ u / x ]_ B |
| 13 | nfcv | |- F/_ y A |
|
| 14 | nfcsb1v | |- F/_ y [_ v / y ]_ [_ u / x ]_ B |
|
| 15 | 13 14 | nfsum | |- F/_ y sum_ k e. A [_ v / y ]_ [_ u / x ]_ B |
| 16 | csbeq1a | |- ( x = u -> B = [_ u / x ]_ B ) |
|
| 17 | csbeq1a | |- ( y = v -> [_ u / x ]_ B = [_ v / y ]_ [_ u / x ]_ B ) |
|
| 18 | 16 17 | sylan9eq | |- ( ( x = u /\ y = v ) -> B = [_ v / y ]_ [_ u / x ]_ B ) |
| 19 | 18 | sumeq2sdv | |- ( ( x = u /\ y = v ) -> sum_ k e. A B = sum_ k e. A [_ v / y ]_ [_ u / x ]_ B ) |
| 20 | 6 7 12 15 19 | cbvmpo | |- ( x e. X , y e. Y |-> sum_ k e. A B ) = ( u e. X , v e. Y |-> sum_ k e. A [_ v / y ]_ [_ u / x ]_ B ) |
| 21 | vex | |- u e. _V |
|
| 22 | vex | |- v e. _V |
|
| 23 | 21 22 | op2ndd | |- ( z = <. u , v >. -> ( 2nd ` z ) = v ) |
| 24 | 23 | csbeq1d | |- ( z = <. u , v >. -> [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B = [_ v / y ]_ [_ ( 1st ` z ) / x ]_ B ) |
| 25 | 21 22 | op1std | |- ( z = <. u , v >. -> ( 1st ` z ) = u ) |
| 26 | 25 | csbeq1d | |- ( z = <. u , v >. -> [_ ( 1st ` z ) / x ]_ B = [_ u / x ]_ B ) |
| 27 | 26 | csbeq2dv | |- ( z = <. u , v >. -> [_ v / y ]_ [_ ( 1st ` z ) / x ]_ B = [_ v / y ]_ [_ u / x ]_ B ) |
| 28 | 24 27 | eqtrd | |- ( z = <. u , v >. -> [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B = [_ v / y ]_ [_ u / x ]_ B ) |
| 29 | 28 | sumeq2sdv | |- ( z = <. u , v >. -> sum_ k e. A [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B = sum_ k e. A [_ v / y ]_ [_ u / x ]_ B ) |
| 30 | 29 | mpompt | |- ( z e. ( X X. Y ) |-> sum_ k e. A [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B ) = ( u e. X , v e. Y |-> sum_ k e. A [_ v / y ]_ [_ u / x ]_ B ) |
| 31 | 20 30 | eqtr4i | |- ( x e. X , y e. Y |-> sum_ k e. A B ) = ( z e. ( X X. Y ) |-> sum_ k e. A [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B ) |
| 32 | txtopon | |- ( ( J e. ( TopOn ` X ) /\ L e. ( TopOn ` Y ) ) -> ( J tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 33 | 2 4 32 | syl2anc | |- ( ph -> ( J tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 34 | nfcv | |- F/_ u B |
|
| 35 | nfcv | |- F/_ v B |
|
| 36 | 34 35 11 14 18 | cbvmpo | |- ( x e. X , y e. Y |-> B ) = ( u e. X , v e. Y |-> [_ v / y ]_ [_ u / x ]_ B ) |
| 37 | 28 | mpompt | |- ( z e. ( X X. Y ) |-> [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B ) = ( u e. X , v e. Y |-> [_ v / y ]_ [_ u / x ]_ B ) |
| 38 | 36 37 | eqtr4i | |- ( x e. X , y e. Y |-> B ) = ( z e. ( X X. Y ) |-> [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B ) |
| 39 | 38 5 | eqeltrrid | |- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B ) e. ( ( J tX L ) Cn K ) ) |
| 40 | 1 33 3 39 | fsumcn | |- ( ph -> ( z e. ( X X. Y ) |-> sum_ k e. A [_ ( 2nd ` z ) / y ]_ [_ ( 1st ` z ) / x ]_ B ) e. ( ( J tX L ) Cn K ) ) |
| 41 | 31 40 | eqeltrid | |- ( ph -> ( x e. X , y e. Y |-> sum_ k e. A B ) e. ( ( J tX L ) Cn K ) ) |