This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foconst | |- ( ( F : A --> { B } /\ F =/= (/) ) -> F : A -onto-> { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frel | |- ( F : A --> { B } -> Rel F ) |
|
| 2 | relrn0 | |- ( Rel F -> ( F = (/) <-> ran F = (/) ) ) |
|
| 3 | 2 | necon3abid | |- ( Rel F -> ( F =/= (/) <-> -. ran F = (/) ) ) |
| 4 | 1 3 | syl | |- ( F : A --> { B } -> ( F =/= (/) <-> -. ran F = (/) ) ) |
| 5 | frn | |- ( F : A --> { B } -> ran F C_ { B } ) |
|
| 6 | sssn | |- ( ran F C_ { B } <-> ( ran F = (/) \/ ran F = { B } ) ) |
|
| 7 | 5 6 | sylib | |- ( F : A --> { B } -> ( ran F = (/) \/ ran F = { B } ) ) |
| 8 | 7 | ord | |- ( F : A --> { B } -> ( -. ran F = (/) -> ran F = { B } ) ) |
| 9 | 4 8 | sylbid | |- ( F : A --> { B } -> ( F =/= (/) -> ran F = { B } ) ) |
| 10 | 9 | imdistani | |- ( ( F : A --> { B } /\ F =/= (/) ) -> ( F : A --> { B } /\ ran F = { B } ) ) |
| 11 | dffo2 | |- ( F : A -onto-> { B } <-> ( F : A --> { B } /\ ran F = { B } ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( F : A --> { B } /\ F =/= (/) ) -> F : A -onto-> { B } ) |