This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024) Generalize to all ordinals and avoid ax-un . (Revised by BTernaryTau, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexdif1en | |- ( ( M e. On /\ A ~~ suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | |- ( A ~~ suc M -> ( A e. _V /\ suc M e. _V ) ) |
|
| 2 | 1 | simpld | |- ( A ~~ suc M -> A e. _V ) |
| 3 | breng | |- ( ( A e. _V /\ suc M e. _V ) -> ( A ~~ suc M <-> E. f f : A -1-1-onto-> suc M ) ) |
|
| 4 | 1 3 | syl | |- ( A ~~ suc M -> ( A ~~ suc M <-> E. f f : A -1-1-onto-> suc M ) ) |
| 5 | 4 | ibi | |- ( A ~~ suc M -> E. f f : A -1-1-onto-> suc M ) |
| 6 | sucidg | |- ( M e. On -> M e. suc M ) |
|
| 7 | f1ocnvdm | |- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> ( `' f ` M ) e. A ) |
|
| 8 | 7 | ancoms | |- ( ( M e. suc M /\ f : A -1-1-onto-> suc M ) -> ( `' f ` M ) e. A ) |
| 9 | 6 8 | sylan | |- ( ( M e. On /\ f : A -1-1-onto-> suc M ) -> ( `' f ` M ) e. A ) |
| 10 | 9 | adantll | |- ( ( ( A e. _V /\ M e. On ) /\ f : A -1-1-onto-> suc M ) -> ( `' f ` M ) e. A ) |
| 11 | vex | |- f e. _V |
|
| 12 | dif1enlem | |- ( ( ( f e. _V /\ A e. _V /\ M e. On ) /\ f : A -1-1-onto-> suc M ) -> ( A \ { ( `' f ` M ) } ) ~~ M ) |
|
| 13 | 11 12 | mp3anl1 | |- ( ( ( A e. _V /\ M e. On ) /\ f : A -1-1-onto-> suc M ) -> ( A \ { ( `' f ` M ) } ) ~~ M ) |
| 14 | sneq | |- ( x = ( `' f ` M ) -> { x } = { ( `' f ` M ) } ) |
|
| 15 | 14 | difeq2d | |- ( x = ( `' f ` M ) -> ( A \ { x } ) = ( A \ { ( `' f ` M ) } ) ) |
| 16 | 15 | breq1d | |- ( x = ( `' f ` M ) -> ( ( A \ { x } ) ~~ M <-> ( A \ { ( `' f ` M ) } ) ~~ M ) ) |
| 17 | 16 | rspcev | |- ( ( ( `' f ` M ) e. A /\ ( A \ { ( `' f ` M ) } ) ~~ M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
| 18 | 10 13 17 | syl2anc | |- ( ( ( A e. _V /\ M e. On ) /\ f : A -1-1-onto-> suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
| 19 | 18 | ex | |- ( ( A e. _V /\ M e. On ) -> ( f : A -1-1-onto-> suc M -> E. x e. A ( A \ { x } ) ~~ M ) ) |
| 20 | 19 | exlimdv | |- ( ( A e. _V /\ M e. On ) -> ( E. f f : A -1-1-onto-> suc M -> E. x e. A ( A \ { x } ) ~~ M ) ) |
| 21 | 5 20 | syl5 | |- ( ( A e. _V /\ M e. On ) -> ( A ~~ suc M -> E. x e. A ( A \ { x } ) ~~ M ) ) |
| 22 | 2 21 | sylan | |- ( ( A ~~ suc M /\ M e. On ) -> ( A ~~ suc M -> E. x e. A ( A \ { x } ) ~~ M ) ) |
| 23 | 22 | ancoms | |- ( ( M e. On /\ A ~~ suc M ) -> ( A ~~ suc M -> E. x e. A ( A \ { x } ) ~~ M ) ) |
| 24 | 23 | syldbl2 | |- ( ( M e. On /\ A ~~ suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |