This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orddif | |- ( Ord A -> A = ( suc A \ { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orddisj | |- ( Ord A -> ( A i^i { A } ) = (/) ) |
|
| 2 | disj3 | |- ( ( A i^i { A } ) = (/) <-> A = ( A \ { A } ) ) |
|
| 3 | df-suc | |- suc A = ( A u. { A } ) |
|
| 4 | 3 | difeq1i | |- ( suc A \ { A } ) = ( ( A u. { A } ) \ { A } ) |
| 5 | difun2 | |- ( ( A u. { A } ) \ { A } ) = ( A \ { A } ) |
|
| 6 | 4 5 | eqtri | |- ( suc A \ { A } ) = ( A \ { A } ) |
| 7 | 6 | eqeq2i | |- ( A = ( suc A \ { A } ) <-> A = ( A \ { A } ) ) |
| 8 | 2 7 | bitr4i | |- ( ( A i^i { A } ) = (/) <-> A = ( suc A \ { A } ) ) |
| 9 | 1 8 | sylib | |- ( Ord A -> A = ( suc A \ { A } ) ) |