This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set A is equinumerous to the successor of an ordinal M , then A with an element removed is equinumerous to M . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) Avoid ax-pow . (Revised by BTernaryTau, 26-Aug-2024) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1en | |- ( ( M e. On /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A ~~ suc M /\ X e. A /\ M e. On ) -> A ~~ suc M ) |
|
| 2 | encv | |- ( A ~~ suc M -> ( A e. _V /\ suc M e. _V ) ) |
|
| 3 | 2 | simpld | |- ( A ~~ suc M -> A e. _V ) |
| 4 | 3 | 3anim1i | |- ( ( A ~~ suc M /\ X e. A /\ M e. On ) -> ( A e. _V /\ X e. A /\ M e. On ) ) |
| 5 | bren | |- ( A ~~ suc M <-> E. f f : A -1-1-onto-> suc M ) |
|
| 6 | sucidg | |- ( M e. On -> M e. suc M ) |
|
| 7 | f1ocnvdm | |- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> ( `' f ` M ) e. A ) |
|
| 8 | 7 | 3adant2 | |- ( ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. suc M ) -> ( `' f ` M ) e. A ) |
| 9 | f1ofvswap | |- ( ( f : A -1-1-onto-> suc M /\ X e. A /\ ( `' f ` M ) e. A ) -> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , ( f ` ( `' f ` M ) ) >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) |
|
| 10 | 8 9 | syld3an3 | |- ( ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. suc M ) -> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , ( f ` ( `' f ` M ) ) >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) |
| 11 | f1ocnvfv2 | |- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> ( f ` ( `' f ` M ) ) = M ) |
|
| 12 | 11 | opeq2d | |- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> <. X , ( f ` ( `' f ` M ) ) >. = <. X , M >. ) |
| 13 | 12 | preq1d | |- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> { <. X , ( f ` ( `' f ` M ) ) >. , <. ( `' f ` M ) , ( f ` X ) >. } = { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) |
| 14 | 13 | uneq2d | |- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , ( f ` ( `' f ` M ) ) >. , <. ( `' f ` M ) , ( f ` X ) >. } ) = ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ) |
| 15 | 14 | f1oeq1d | |- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , ( f ` ( `' f ` M ) ) >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M <-> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) ) |
| 16 | 15 | 3adant2 | |- ( ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. suc M ) -> ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , ( f ` ( `' f ` M ) ) >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M <-> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) ) |
| 17 | 10 16 | mpbid | |- ( ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. suc M ) -> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) |
| 18 | 6 17 | syl3an3 | |- ( ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) -> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) |
| 19 | 18 | 3adant3r1 | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) |
| 20 | f1ofun | |- ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M -> Fun ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ) |
|
| 21 | opex | |- <. X , M >. e. _V |
|
| 22 | 21 | prid1 | |- <. X , M >. e. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } |
| 23 | elun2 | |- ( <. X , M >. e. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } -> <. X , M >. e. ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ) |
|
| 24 | 22 23 | ax-mp | |- <. X , M >. e. ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) |
| 25 | funopfv | |- ( Fun ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) -> ( <. X , M >. e. ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) -> ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` X ) = M ) ) |
|
| 26 | 24 25 | mpi | |- ( Fun ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) -> ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` X ) = M ) |
| 27 | 19 20 26 | 3syl | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` X ) = M ) |
| 28 | simpr2 | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> X e. A ) |
|
| 29 | f1ocnvfv | |- ( ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M /\ X e. A ) -> ( ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` X ) = M -> ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) = X ) ) |
|
| 30 | 19 28 29 | syl2anc | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` X ) = M -> ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) = X ) ) |
| 31 | 27 30 | mpd | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) = X ) |
| 32 | 31 | sneqd | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> { ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) } = { X } ) |
| 33 | 32 | difeq2d | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( A \ { ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) } ) = ( A \ { X } ) ) |
| 34 | simpr1 | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> A e. _V ) |
|
| 35 | 3simpc | |- ( ( A e. _V /\ X e. A /\ M e. On ) -> ( X e. A /\ M e. On ) ) |
|
| 36 | 35 | anim2i | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( f : A -1-1-onto-> suc M /\ ( X e. A /\ M e. On ) ) ) |
| 37 | 3anass | |- ( ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) <-> ( f : A -1-1-onto-> suc M /\ ( X e. A /\ M e. On ) ) ) |
|
| 38 | 36 37 | sylibr | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) |
| 39 | 34 38 | jca | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( A e. _V /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) ) |
| 40 | simpl | |- ( ( A e. _V /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) -> A e. _V ) |
|
| 41 | simpr3 | |- ( ( A e. _V /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) -> M e. On ) |
|
| 42 | 40 41 | jca | |- ( ( A e. _V /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) -> ( A e. _V /\ M e. On ) ) |
| 43 | simpr | |- ( ( A e. _V /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) -> ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) |
|
| 44 | 42 43 | jca | |- ( ( A e. _V /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) -> ( ( A e. _V /\ M e. On ) /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) ) |
| 45 | vex | |- f e. _V |
|
| 46 | 45 | resex | |- ( f |` ( A \ { X , ( `' f ` M ) } ) ) e. _V |
| 47 | prex | |- { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } e. _V |
|
| 48 | 46 47 | unex | |- ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) e. _V |
| 49 | dif1enlem | |- ( ( ( ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) e. _V /\ A e. _V /\ M e. On ) /\ ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) -> ( A \ { ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) } ) ~~ M ) |
|
| 50 | 48 49 | mp3anl1 | |- ( ( ( A e. _V /\ M e. On ) /\ ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) : A -1-1-onto-> suc M ) -> ( A \ { ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) } ) ~~ M ) |
| 51 | 18 50 | sylan2 | |- ( ( ( A e. _V /\ M e. On ) /\ ( f : A -1-1-onto-> suc M /\ X e. A /\ M e. On ) ) -> ( A \ { ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) } ) ~~ M ) |
| 52 | 39 44 51 | 3syl | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( A \ { ( `' ( ( f |` ( A \ { X , ( `' f ` M ) } ) ) u. { <. X , M >. , <. ( `' f ` M ) , ( f ` X ) >. } ) ` M ) } ) ~~ M ) |
| 53 | 33 52 | eqbrtrrd | |- ( ( f : A -1-1-onto-> suc M /\ ( A e. _V /\ X e. A /\ M e. On ) ) -> ( A \ { X } ) ~~ M ) |
| 54 | 53 | ex | |- ( f : A -1-1-onto-> suc M -> ( ( A e. _V /\ X e. A /\ M e. On ) -> ( A \ { X } ) ~~ M ) ) |
| 55 | 54 | exlimiv | |- ( E. f f : A -1-1-onto-> suc M -> ( ( A e. _V /\ X e. A /\ M e. On ) -> ( A \ { X } ) ~~ M ) ) |
| 56 | 5 55 | sylbi | |- ( A ~~ suc M -> ( ( A e. _V /\ X e. A /\ M e. On ) -> ( A \ { X } ) ~~ M ) ) |
| 57 | 1 4 56 | sylc | |- ( ( A ~~ suc M /\ X e. A /\ M e. On ) -> ( A \ { X } ) ~~ M ) |
| 58 | 57 | 3comr | |- ( ( M e. On /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |