This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fressnfv | |- ( ( F Fn A /\ B e. A ) -> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( x = B -> { x } = { B } ) |
|
| 2 | reseq2 | |- ( { x } = { B } -> ( F |` { x } ) = ( F |` { B } ) ) |
|
| 3 | 2 | feq1d | |- ( { x } = { B } -> ( ( F |` { x } ) : { x } --> C <-> ( F |` { B } ) : { x } --> C ) ) |
| 4 | feq2 | |- ( { x } = { B } -> ( ( F |` { B } ) : { x } --> C <-> ( F |` { B } ) : { B } --> C ) ) |
|
| 5 | 3 4 | bitrd | |- ( { x } = { B } -> ( ( F |` { x } ) : { x } --> C <-> ( F |` { B } ) : { B } --> C ) ) |
| 6 | 1 5 | syl | |- ( x = B -> ( ( F |` { x } ) : { x } --> C <-> ( F |` { B } ) : { B } --> C ) ) |
| 7 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 8 | 7 | eleq1d | |- ( x = B -> ( ( F ` x ) e. C <-> ( F ` B ) e. C ) ) |
| 9 | 6 8 | bibi12d | |- ( x = B -> ( ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) <-> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) ) |
| 10 | 9 | imbi2d | |- ( x = B -> ( ( F Fn A -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) <-> ( F Fn A -> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) ) ) |
| 11 | fnressn | |- ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
|
| 12 | vsnid | |- x e. { x } |
|
| 13 | fvres | |- ( x e. { x } -> ( ( F |` { x } ) ` x ) = ( F ` x ) ) |
|
| 14 | 12 13 | ax-mp | |- ( ( F |` { x } ) ` x ) = ( F ` x ) |
| 15 | 14 | opeq2i | |- <. x , ( ( F |` { x } ) ` x ) >. = <. x , ( F ` x ) >. |
| 16 | 15 | sneqi | |- { <. x , ( ( F |` { x } ) ` x ) >. } = { <. x , ( F ` x ) >. } |
| 17 | 16 | eqeq2i | |- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
| 18 | vex | |- x e. _V |
|
| 19 | 18 | fsn2 | |- ( ( F |` { x } ) : { x } --> C <-> ( ( ( F |` { x } ) ` x ) e. C /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) |
| 20 | iba | |- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } -> ( ( ( F |` { x } ) ` x ) e. C <-> ( ( ( F |` { x } ) ` x ) e. C /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) ) |
|
| 21 | 14 | eleq1i | |- ( ( ( F |` { x } ) ` x ) e. C <-> ( F ` x ) e. C ) |
| 22 | 20 21 | bitr3di | |- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } -> ( ( ( ( F |` { x } ) ` x ) e. C /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) <-> ( F ` x ) e. C ) ) |
| 23 | 19 22 | bitrid | |- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) |
| 24 | 17 23 | sylbir | |- ( ( F |` { x } ) = { <. x , ( F ` x ) >. } -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) |
| 25 | 11 24 | syl | |- ( ( F Fn A /\ x e. A ) -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) |
| 26 | 25 | expcom | |- ( x e. A -> ( F Fn A -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) ) |
| 27 | 10 26 | vtoclga | |- ( B e. A -> ( F Fn A -> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) ) |
| 28 | 27 | impcom | |- ( ( F Fn A /\ B e. A ) -> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) |