This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnimatpd.1 | |- ( ph -> F Fn D ) |
|
| fnimatpd.2 | |- ( ph -> A e. D ) |
||
| fnimatpd.3 | |- ( ph -> B e. D ) |
||
| fnimatpd.4 | |- ( ph -> C e. D ) |
||
| Assertion | fnimatpd | |- ( ph -> ( F " { A , B , C } ) = { ( F ` A ) , ( F ` B ) , ( F ` C ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnimatpd.1 | |- ( ph -> F Fn D ) |
|
| 2 | fnimatpd.2 | |- ( ph -> A e. D ) |
|
| 3 | fnimatpd.3 | |- ( ph -> B e. D ) |
|
| 4 | fnimatpd.4 | |- ( ph -> C e. D ) |
|
| 5 | fnimapr | |- ( ( F Fn D /\ A e. D /\ B e. D ) -> ( F " { A , B } ) = { ( F ` A ) , ( F ` B ) } ) |
|
| 6 | 1 2 3 5 | syl3anc | |- ( ph -> ( F " { A , B } ) = { ( F ` A ) , ( F ` B ) } ) |
| 7 | fnsnfv | |- ( ( F Fn D /\ C e. D ) -> { ( F ` C ) } = ( F " { C } ) ) |
|
| 8 | 1 4 7 | syl2anc | |- ( ph -> { ( F ` C ) } = ( F " { C } ) ) |
| 9 | 8 | eqcomd | |- ( ph -> ( F " { C } ) = { ( F ` C ) } ) |
| 10 | 6 9 | uneq12d | |- ( ph -> ( ( F " { A , B } ) u. ( F " { C } ) ) = ( { ( F ` A ) , ( F ` B ) } u. { ( F ` C ) } ) ) |
| 11 | df-tp | |- { A , B , C } = ( { A , B } u. { C } ) |
|
| 12 | 11 | imaeq2i | |- ( F " { A , B , C } ) = ( F " ( { A , B } u. { C } ) ) |
| 13 | imaundi | |- ( F " ( { A , B } u. { C } ) ) = ( ( F " { A , B } ) u. ( F " { C } ) ) |
|
| 14 | 12 13 | eqtri | |- ( F " { A , B , C } ) = ( ( F " { A , B } ) u. ( F " { C } ) ) |
| 15 | df-tp | |- { ( F ` A ) , ( F ` B ) , ( F ` C ) } = ( { ( F ` A ) , ( F ` B ) } u. { ( F ` C ) } ) |
|
| 16 | 10 14 15 | 3eqtr4g | |- ( ph -> ( F " { A , B , C } ) = { ( F ` A ) , ( F ` B ) , ( F ` C ) } ) |