This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cycl3grtri . (Contributed by AV, 5-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cycl3grtrilem | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 2 | upgrwlkvtxedg | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) |
| 4 | 1 3 | sylan2 | |- ( ( G e. UPGraph /\ F ( Paths ` G ) P ) -> A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) |
| 5 | 4 | adantr | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) |
| 6 | oveq2 | |- ( ( # ` F ) = 3 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 3 ) ) |
|
| 7 | fzo0to3tp | |- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
|
| 8 | 6 7 | eqtrdi | |- ( ( # ` F ) = 3 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } ) |
| 9 | 8 | adantl | |- ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } ) |
| 10 | 9 | adantl | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } ) |
| 11 | 10 | raleqdv | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) ) |
| 12 | fveq2 | |- ( ( # ` F ) = 3 -> ( P ` ( # ` F ) ) = ( P ` 3 ) ) |
|
| 13 | 12 | eqeq2d | |- ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` 3 ) ) ) |
| 14 | c0ex | |- 0 e. _V |
|
| 15 | 1ex | |- 1 e. _V |
|
| 16 | 2ex | |- 2 e. _V |
|
| 17 | fveq2 | |- ( x = 0 -> ( P ` x ) = ( P ` 0 ) ) |
|
| 18 | fv0p1e1 | |- ( x = 0 -> ( P ` ( x + 1 ) ) = ( P ` 1 ) ) |
|
| 19 | 17 18 | preq12d | |- ( x = 0 -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 20 | 19 | eleq1d | |- ( x = 0 -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) ) |
| 21 | fveq2 | |- ( x = 1 -> ( P ` x ) = ( P ` 1 ) ) |
|
| 22 | oveq1 | |- ( x = 1 -> ( x + 1 ) = ( 1 + 1 ) ) |
|
| 23 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 24 | 22 23 | eqtrdi | |- ( x = 1 -> ( x + 1 ) = 2 ) |
| 25 | 24 | fveq2d | |- ( x = 1 -> ( P ` ( x + 1 ) ) = ( P ` 2 ) ) |
| 26 | 21 25 | preq12d | |- ( x = 1 -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 27 | 26 | eleq1d | |- ( x = 1 -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 28 | fveq2 | |- ( x = 2 -> ( P ` x ) = ( P ` 2 ) ) |
|
| 29 | oveq1 | |- ( x = 2 -> ( x + 1 ) = ( 2 + 1 ) ) |
|
| 30 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 31 | 29 30 | eqtrdi | |- ( x = 2 -> ( x + 1 ) = 3 ) |
| 32 | 31 | fveq2d | |- ( x = 2 -> ( P ` ( x + 1 ) ) = ( P ` 3 ) ) |
| 33 | 28 32 | preq12d | |- ( x = 2 -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
| 34 | 33 | eleq1d | |- ( x = 2 -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) |
| 35 | 14 15 16 20 27 34 | raltp | |- ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) |
| 36 | simpr1 | |- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
|
| 37 | preq2 | |- ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 2 ) , ( P ` 0 ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
|
| 38 | prcom | |- { ( P ` 2 ) , ( P ` 0 ) } = { ( P ` 0 ) , ( P ` 2 ) } |
|
| 39 | 37 38 | eqtr3di | |- ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 2 ) , ( P ` 3 ) } = { ( P ` 0 ) , ( P ` 2 ) } ) |
| 40 | 39 | eleq1d | |- ( ( P ` 0 ) = ( P ` 3 ) -> ( { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 41 | 40 | biimpcd | |- ( { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) -> ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) -> ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 43 | 42 | impcom | |- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 44 | simpr2 | |- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
|
| 45 | 36 43 44 | 3jca | |- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 46 | 45 | ex | |- ( ( P ` 0 ) = ( P ` 3 ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 47 | 35 46 | biimtrid | |- ( ( P ` 0 ) = ( P ` 3 ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 48 | 13 47 | biimtrdi | |- ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) ) |
| 49 | 48 | impcom | |- ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 50 | 49 | adantl | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 51 | 11 50 | sylbid | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 52 | 5 51 | mpd | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |