This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for mapping triangles onto triangles. Lemma for grimgrtri and grlimgrtri . (Contributed by AV, 23-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grtrimap | |- ( F : V -1-1-> W -> ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : V -1-1-> W -> F : V --> W ) |
|
| 2 | 1 | ffvelcdmda | |- ( ( F : V -1-1-> W /\ a e. V ) -> ( F ` a ) e. W ) |
| 3 | 2 | ex | |- ( F : V -1-1-> W -> ( a e. V -> ( F ` a ) e. W ) ) |
| 4 | 1 | ffvelcdmda | |- ( ( F : V -1-1-> W /\ b e. V ) -> ( F ` b ) e. W ) |
| 5 | 4 | ex | |- ( F : V -1-1-> W -> ( b e. V -> ( F ` b ) e. W ) ) |
| 6 | 1 | ffvelcdmda | |- ( ( F : V -1-1-> W /\ c e. V ) -> ( F ` c ) e. W ) |
| 7 | 6 | ex | |- ( F : V -1-1-> W -> ( c e. V -> ( F ` c ) e. W ) ) |
| 8 | 3 5 7 | 3anim123d | |- ( F : V -1-1-> W -> ( ( a e. V /\ b e. V /\ c e. V ) -> ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) ) ) |
| 9 | 8 | adantrd | |- ( F : V -1-1-> W -> ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) ) ) |
| 10 | 9 | imp | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) ) |
| 11 | imaeq2 | |- ( T = { a , b , c } -> ( F " T ) = ( F " { a , b , c } ) ) |
|
| 12 | 11 | ad2antrl | |- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( F " T ) = ( F " { a , b , c } ) ) |
| 13 | 12 | adantl | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( F " T ) = ( F " { a , b , c } ) ) |
| 14 | f1fn | |- ( F : V -1-1-> W -> F Fn V ) |
|
| 15 | 14 | adantr | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> F Fn V ) |
| 16 | simprl1 | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> a e. V ) |
|
| 17 | simprl2 | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> b e. V ) |
|
| 18 | simprl3 | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> c e. V ) |
|
| 19 | 15 16 17 18 | fnimatpd | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( F " { a , b , c } ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) |
| 20 | 13 19 | eqtrd | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) |
| 21 | simpl | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> F : V -1-1-> W ) |
|
| 22 | tpssi | |- ( ( a e. V /\ b e. V /\ c e. V ) -> { a , b , c } C_ V ) |
|
| 23 | 22 | adantr | |- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> { a , b , c } C_ V ) |
| 24 | sseq1 | |- ( T = { a , b , c } -> ( T C_ V <-> { a , b , c } C_ V ) ) |
|
| 25 | 24 | ad2antrl | |- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( T C_ V <-> { a , b , c } C_ V ) ) |
| 26 | 23 25 | mpbird | |- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> T C_ V ) |
| 27 | 26 | adantl | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> T C_ V ) |
| 28 | tpex | |- { a , b , c } e. _V |
|
| 29 | eleq1 | |- ( T = { a , b , c } -> ( T e. _V <-> { a , b , c } e. _V ) ) |
|
| 30 | 28 29 | mpbiri | |- ( T = { a , b , c } -> T e. _V ) |
| 31 | 30 | ad2antrl | |- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> T e. _V ) |
| 32 | 31 | adantl | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> T e. _V ) |
| 33 | f1imaeng | |- ( ( F : V -1-1-> W /\ T C_ V /\ T e. _V ) -> ( F " T ) ~~ T ) |
|
| 34 | hasheni | |- ( ( F " T ) ~~ T -> ( # ` ( F " T ) ) = ( # ` T ) ) |
|
| 35 | 33 34 | syl | |- ( ( F : V -1-1-> W /\ T C_ V /\ T e. _V ) -> ( # ` ( F " T ) ) = ( # ` T ) ) |
| 36 | 35 | eqcomd | |- ( ( F : V -1-1-> W /\ T C_ V /\ T e. _V ) -> ( # ` T ) = ( # ` ( F " T ) ) ) |
| 37 | 21 27 32 36 | syl3anc | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( # ` T ) = ( # ` ( F " T ) ) ) |
| 38 | simprrr | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( # ` T ) = 3 ) |
|
| 39 | 37 38 | eqtr3d | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( # ` ( F " T ) ) = 3 ) |
| 40 | 10 20 39 | 3jca | |- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) |
| 41 | 40 | ex | |- ( F : V -1-1-> W -> ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) ) |