This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvgcmp.1 | |- Z = ( ZZ>= ` M ) |
|
| cvgcmp.2 | |- ( ph -> N e. Z ) |
||
| cvgcmp.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| cvgcmp.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
||
| cvgcmpub.5 | |- ( ph -> seq M ( + , F ) ~~> A ) |
||
| cvgcmpub.6 | |- ( ph -> seq M ( + , G ) ~~> B ) |
||
| cvgcmpub.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) <_ ( F ` k ) ) |
||
| Assertion | cvgcmpub | |- ( ph -> B <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvgcmp.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | cvgcmp.2 | |- ( ph -> N e. Z ) |
|
| 3 | cvgcmp.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 4 | cvgcmp.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
|
| 5 | cvgcmpub.5 | |- ( ph -> seq M ( + , F ) ~~> A ) |
|
| 6 | cvgcmpub.6 | |- ( ph -> seq M ( + , G ) ~~> B ) |
|
| 7 | cvgcmpub.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) <_ ( F ` k ) ) |
|
| 8 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 9 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 10 | 8 9 | syl | |- ( ph -> M e. ZZ ) |
| 11 | 1 10 4 | serfre | |- ( ph -> seq M ( + , G ) : Z --> RR ) |
| 12 | 11 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. RR ) |
| 13 | 1 10 3 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 14 | 13 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. RR ) |
| 15 | simpr | |- ( ( ph /\ n e. Z ) -> n e. Z ) |
|
| 16 | 15 1 | eleqtrdi | |- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` M ) ) |
| 17 | simpl | |- ( ( ph /\ n e. Z ) -> ph ) |
|
| 18 | elfzuz | |- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
|
| 19 | 18 1 | eleqtrrdi | |- ( k e. ( M ... n ) -> k e. Z ) |
| 20 | 17 19 4 | syl2an | |- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) e. RR ) |
| 21 | 17 19 3 | syl2an | |- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. RR ) |
| 22 | 17 19 7 | syl2an | |- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) <_ ( F ` k ) ) |
| 23 | 16 20 21 22 | serle | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) <_ ( seq M ( + , F ) ` n ) ) |
| 24 | 1 10 6 5 12 14 23 | climle | |- ( ph -> B <_ A ) |