This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | riincld | |- ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) -> ( X i^i |^|_ x e. A B ) e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | riin0 | |- ( A = (/) -> ( X i^i |^|_ x e. A B ) = X ) |
|
| 3 | 2 | adantl | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A = (/) ) -> ( X i^i |^|_ x e. A B ) = X ) |
| 4 | 1 | topcld | |- ( J e. Top -> X e. ( Clsd ` J ) ) |
| 5 | 4 | ad2antrr | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A = (/) ) -> X e. ( Clsd ` J ) ) |
| 6 | 3 5 | eqeltrd | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A = (/) ) -> ( X i^i |^|_ x e. A B ) e. ( Clsd ` J ) ) |
| 7 | 4 | ad2antrr | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A =/= (/) ) -> X e. ( Clsd ` J ) ) |
| 8 | simpr | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A =/= (/) ) -> A =/= (/) ) |
|
| 9 | simplr | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A =/= (/) ) -> A. x e. A B e. ( Clsd ` J ) ) |
|
| 10 | iincld | |- ( ( A =/= (/) /\ A. x e. A B e. ( Clsd ` J ) ) -> |^|_ x e. A B e. ( Clsd ` J ) ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A =/= (/) ) -> |^|_ x e. A B e. ( Clsd ` J ) ) |
| 12 | incld | |- ( ( X e. ( Clsd ` J ) /\ |^|_ x e. A B e. ( Clsd ` J ) ) -> ( X i^i |^|_ x e. A B ) e. ( Clsd ` J ) ) |
|
| 13 | 7 11 12 | syl2anc | |- ( ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) /\ A =/= (/) ) -> ( X i^i |^|_ x e. A B ) e. ( Clsd ` J ) ) |
| 14 | 6 13 | pm2.61dane | |- ( ( J e. Top /\ A. x e. A B e. ( Clsd ` J ) ) -> ( X i^i |^|_ x e. A B ) e. ( Clsd ` J ) ) |