This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space is a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphlmod | |- ( W e. CPreHil -> W e. LMod ) |
|
| 2 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 3 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 4 | 2 3 | cphsca | |- ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
| 5 | 2 3 | cphsubrg | |- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) |
| 6 | 2 3 | isclm | |- ( W e. CMod <-> ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) ) |
| 7 | 1 4 5 6 | syl3anbrc | |- ( W e. CPreHil -> W e. CMod ) |