This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | |- V = ( Base ` W ) |
|
| ocvfval.i | |- ., = ( .i ` W ) |
||
| ocvfval.f | |- F = ( Scalar ` W ) |
||
| ocvfval.z | |- .0. = ( 0g ` F ) |
||
| ocvfval.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocvval | |- ( S C_ V -> ( ._|_ ` S ) = { x e. V | A. y e. S ( x ., y ) = .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | |- V = ( Base ` W ) |
|
| 2 | ocvfval.i | |- ., = ( .i ` W ) |
|
| 3 | ocvfval.f | |- F = ( Scalar ` W ) |
|
| 4 | ocvfval.z | |- .0. = ( 0g ` F ) |
|
| 5 | ocvfval.o | |- ._|_ = ( ocv ` W ) |
|
| 6 | 1 | fvexi | |- V e. _V |
| 7 | 6 | elpw2 | |- ( S e. ~P V <-> S C_ V ) |
| 8 | 1 2 3 4 5 | ocvfval | |- ( W e. _V -> ._|_ = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ) |
| 9 | 8 | fveq1d | |- ( W e. _V -> ( ._|_ ` S ) = ( ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ` S ) ) |
| 10 | raleq | |- ( s = S -> ( A. y e. s ( x ., y ) = .0. <-> A. y e. S ( x ., y ) = .0. ) ) |
|
| 11 | 10 | rabbidv | |- ( s = S -> { x e. V | A. y e. s ( x ., y ) = .0. } = { x e. V | A. y e. S ( x ., y ) = .0. } ) |
| 12 | eqid | |- ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) |
|
| 13 | 6 | rabex | |- { x e. V | A. y e. S ( x ., y ) = .0. } e. _V |
| 14 | 11 12 13 | fvmpt | |- ( S e. ~P V -> ( ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ` S ) = { x e. V | A. y e. S ( x ., y ) = .0. } ) |
| 15 | 9 14 | sylan9eq | |- ( ( W e. _V /\ S e. ~P V ) -> ( ._|_ ` S ) = { x e. V | A. y e. S ( x ., y ) = .0. } ) |
| 16 | 0fv | |- ( (/) ` S ) = (/) |
|
| 17 | fvprc | |- ( -. W e. _V -> ( ocv ` W ) = (/) ) |
|
| 18 | 5 17 | eqtrid | |- ( -. W e. _V -> ._|_ = (/) ) |
| 19 | 18 | fveq1d | |- ( -. W e. _V -> ( ._|_ ` S ) = ( (/) ` S ) ) |
| 20 | ssrab2 | |- { x e. V | A. y e. S ( x ., y ) = .0. } C_ V |
|
| 21 | fvprc | |- ( -. W e. _V -> ( Base ` W ) = (/) ) |
|
| 22 | 1 21 | eqtrid | |- ( -. W e. _V -> V = (/) ) |
| 23 | sseq0 | |- ( ( { x e. V | A. y e. S ( x ., y ) = .0. } C_ V /\ V = (/) ) -> { x e. V | A. y e. S ( x ., y ) = .0. } = (/) ) |
|
| 24 | 20 22 23 | sylancr | |- ( -. W e. _V -> { x e. V | A. y e. S ( x ., y ) = .0. } = (/) ) |
| 25 | 16 19 24 | 3eqtr4a | |- ( -. W e. _V -> ( ._|_ ` S ) = { x e. V | A. y e. S ( x ., y ) = .0. } ) |
| 26 | 25 | adantr | |- ( ( -. W e. _V /\ S e. ~P V ) -> ( ._|_ ` S ) = { x e. V | A. y e. S ( x ., y ) = .0. } ) |
| 27 | 15 26 | pm2.61ian | |- ( S e. ~P V -> ( ._|_ ` S ) = { x e. V | A. y e. S ( x ., y ) = .0. } ) |
| 28 | 7 27 | sylbir | |- ( S C_ V -> ( ._|_ ` S ) = { x e. V | A. y e. S ( x ., y ) = .0. } ) |