This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riinrab | |- ( A i^i |^|_ x e. X { y e. A | ph } ) = { y e. A | A. x e. X ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 | |- ( X = (/) -> ( A i^i |^|_ x e. X { y e. A | ph } ) = A ) |
|
| 2 | rzal | |- ( X = (/) -> A. x e. X ph ) |
|
| 3 | 2 | ralrimivw | |- ( X = (/) -> A. y e. A A. x e. X ph ) |
| 4 | rabid2 | |- ( A = { y e. A | A. x e. X ph } <-> A. y e. A A. x e. X ph ) |
|
| 5 | 3 4 | sylibr | |- ( X = (/) -> A = { y e. A | A. x e. X ph } ) |
| 6 | 1 5 | eqtrd | |- ( X = (/) -> ( A i^i |^|_ x e. X { y e. A | ph } ) = { y e. A | A. x e. X ph } ) |
| 7 | ssrab2 | |- { y e. A | ph } C_ A |
|
| 8 | 7 | rgenw | |- A. x e. X { y e. A | ph } C_ A |
| 9 | riinn0 | |- ( ( A. x e. X { y e. A | ph } C_ A /\ X =/= (/) ) -> ( A i^i |^|_ x e. X { y e. A | ph } ) = |^|_ x e. X { y e. A | ph } ) |
|
| 10 | 8 9 | mpan | |- ( X =/= (/) -> ( A i^i |^|_ x e. X { y e. A | ph } ) = |^|_ x e. X { y e. A | ph } ) |
| 11 | iinrab | |- ( X =/= (/) -> |^|_ x e. X { y e. A | ph } = { y e. A | A. x e. X ph } ) |
|
| 12 | 10 11 | eqtrd | |- ( X =/= (/) -> ( A i^i |^|_ x e. X { y e. A | ph } ) = { y e. A | A. x e. X ph } ) |
| 13 | 6 12 | pm2.61ine | |- ( A i^i |^|_ x e. X { y e. A | ph } ) = { y e. A | A. x e. X ph } |