This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of inner product; analogue of cnmpt12f which cannot be used directly because .i is not a function. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1ip.j | |- J = ( TopOpen ` W ) |
|
| cnmpt1ip.c | |- C = ( TopOpen ` CCfld ) |
||
| cnmpt1ip.h | |- ., = ( .i ` W ) |
||
| cnmpt1ip.r | |- ( ph -> W e. CPreHil ) |
||
| cnmpt1ip.k | |- ( ph -> K e. ( TopOn ` X ) ) |
||
| cnmpt1ip.a | |- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
||
| cnmpt1ip.b | |- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
||
| Assertion | cnmpt1ip | |- ( ph -> ( x e. X |-> ( A ., B ) ) e. ( K Cn C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1ip.j | |- J = ( TopOpen ` W ) |
|
| 2 | cnmpt1ip.c | |- C = ( TopOpen ` CCfld ) |
|
| 3 | cnmpt1ip.h | |- ., = ( .i ` W ) |
|
| 4 | cnmpt1ip.r | |- ( ph -> W e. CPreHil ) |
|
| 5 | cnmpt1ip.k | |- ( ph -> K e. ( TopOn ` X ) ) |
|
| 6 | cnmpt1ip.a | |- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
|
| 7 | cnmpt1ip.b | |- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
|
| 8 | cphngp | |- ( W e. CPreHil -> W e. NrmGrp ) |
|
| 9 | ngptps | |- ( W e. NrmGrp -> W e. TopSp ) |
|
| 10 | 4 8 9 | 3syl | |- ( ph -> W e. TopSp ) |
| 11 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 12 | 11 1 | istps | |- ( W e. TopSp <-> J e. ( TopOn ` ( Base ` W ) ) ) |
| 13 | 10 12 | sylib | |- ( ph -> J e. ( TopOn ` ( Base ` W ) ) ) |
| 14 | cnf2 | |- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` W ) ) |
|
| 15 | 5 13 6 14 | syl3anc | |- ( ph -> ( x e. X |-> A ) : X --> ( Base ` W ) ) |
| 16 | 15 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> A e. ( Base ` W ) ) |
| 17 | cnf2 | |- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
|
| 18 | 5 13 7 17 | syl3anc | |- ( ph -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
| 19 | 18 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> B e. ( Base ` W ) ) |
| 20 | eqid | |- ( .if ` W ) = ( .if ` W ) |
|
| 21 | 11 3 20 | ipfval | |- ( ( A e. ( Base ` W ) /\ B e. ( Base ` W ) ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) |
| 22 | 16 19 21 | syl2anc | |- ( ( ph /\ x e. X ) -> ( A ( .if ` W ) B ) = ( A ., B ) ) |
| 23 | 22 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) = ( x e. X |-> ( A ., B ) ) ) |
| 24 | 20 1 2 | ipcn | |- ( W e. CPreHil -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) |
| 25 | 4 24 | syl | |- ( ph -> ( .if ` W ) e. ( ( J tX J ) Cn C ) ) |
| 26 | 5 6 7 25 | cnmpt12f | |- ( ph -> ( x e. X |-> ( A ( .if ` W ) B ) ) e. ( K Cn C ) ) |
| 27 | 23 26 | eqeltrrd | |- ( ph -> ( x e. X |-> ( A ., B ) ) e. ( K Cn C ) ) |